Copolymers of Bis-Diketopyrrolopyrrole and Benzothiadiazole Derivatives for High-Performance Ambipolar Field-Effect Transistors on Flexible Substrates
We develop an “acceptor dimerization” strategy by a bis-diketopyrrolopyrrole (2DPP) for an ambipolar organic semiconductor. Copolymers of 2DPP and benzothiadiazole (BTz) derivatives, P2DPP-BTz and P2DPP-2FBTz, are designed and synthesized. Both of the polymers exhibit narrow optical bandgaps of ca....
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 31; pp. 25858 - 25865 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We develop an “acceptor dimerization” strategy by a bis-diketopyrrolopyrrole (2DPP) for an ambipolar organic semiconductor. Copolymers of 2DPP and benzothiadiazole (BTz) derivatives, P2DPP-BTz and P2DPP-2FBTz, are designed and synthesized. Both of the polymers exhibit narrow optical bandgaps of ca. 1.30 eV. The strong electron-withdrawing property of 2DPP results in low-lying lowest unoccupied molecular orbital (LUMO) energy levels of the polymers, improving the electron mobilities. 2D grazing incident X-ray diffraction and atomic force microscopy indicate that the P2DPP-BTz exhibits a small π–π stacking distance of 3.59 Å and a smooth interface, thus promoting high mobility. To take full advantage of the flexibility of organic semiconductors, flexible field-effect transistors (FETs) were fabricated on poly(ethylene terephthalate) (PET) substrates. The FETs based on P2DPP-BTz show high performance with hole and electron mobilities of 1.73 and 2.58 cm2 V–1 s–1, respectively. Our results demonstrate that the 2DPP acceptor is a promising building block for high-mobility ambipolar polymers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b16516 |