A cloned cDNA for duck malic enzyme detects abnormally large malic enzyme mRNAs in a strain of mice (Mod-1n) that does not express malic enzyme protein

Sensitive immunochemical assays were used to measure the mass and rate of synthesis of malic enzyme protein in wild-type and Mod-1n mutant mice fed a high carbohydrate/low fat diet supplemented with thyroid hormone. Malic enzyme activity in the fed, wild-type mice was 100-fold higher than in starved...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 23; no. 15; pp. 3454 - 3459
Main Authors Glynias, Manuel J, Morris, Sidney M, Fantozzi, Dominic A, Winberry, Larry K, Back, Donald W, Fisch, Judith E, Goodridge, Alan G
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 17.07.1984
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sensitive immunochemical assays were used to measure the mass and rate of synthesis of malic enzyme protein in wild-type and Mod-1n mutant mice fed a high carbohydrate/low fat diet supplemented with thyroid hormone. Malic enzyme activity in the fed, wild-type mice was 100-fold higher than in starved, wild-type mice. Neither activity, mass, nor synthesis of malic enzyme could be detected in fed, mutant mice. However, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase responded to these dietary manipulations with normal or supranormal increases in activities, respectively, in mutant mice. A cDNA clone containing an almost complete copy of the mRNA for malic enzyme from duck liver was used to analyze poly(A+) RNA from C57BL/6J-DBA/2J hybrid mice that had been fasted and refed a high carbohydrate/low fat diet supplemented with thyroid hormone. The 32P-cDNA probe hybridized to two RNAs of 2250 and 2950 nucleotides. The same two RNAs were detected in RNA from starved mice except at much lower concentrations. A similar analysis of RNA from Mod-1n mice fed the high carbohydrate-thyroid diet also revealed two hybridizing RNAs but each was 700-800 nucleotides longer than its counterpart in wild-type mice. The abundance of malic enzyme mRNA in the fed, mutant mice was about the same as that in fed, wild-type mice. The mutant malic enzyme mRNAs also were present in RNA from starved mice but at much lower concentrations. These results suggest that the mutation responsible for the Mod-1n phenotype is in the structural gene for malic enzyme.
Bibliography:istex:F8376BFF8EBC08B3A7E41C89A14334DB901A54BE
ark:/67375/TPS-DBV1C48G-0
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00310a011