High Spin Cobalt Complexes Supported by a Trigonal Tris(Phosphinimide) Ligand
Terminal, π-basic moieties occupy a prominent position in the stabilization of unusual or reactive inorganic species. The electron-releasing, π-basic properties of phosphinimides (PN) have been employed to stabilize electron-deficient early transition metals and lanthanides. In principle, a ligand f...
Saved in:
Published in | Inorganic chemistry Vol. 60; no. 16; pp. 11830 - 11837 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
16.08.2021
|
Online Access | Get full text |
Cover
Loading…
Summary: | Terminal, π-basic moieties occupy a prominent position in the stabilization of unusual or reactive inorganic species. The electron-releasing, π-basic properties of phosphinimides (PN) have been employed to stabilize electron-deficient early transition metals and lanthanides. In principle, a ligand field comprised of terminal PN groups should enable access to high-valent states of late first row transition metals. Herein, we report a new class of multidentate phosphinimide ligands to logically explore this hypothesis. Access to such ligands is made possible by a new procedure for the electrophilic amination of rigid, sterically encumbering, multidentate phosphines. Such frameworks facilitate terminal PN coordination to cobalt as demonstrated by the synthesis of a trinuclear CoII 3 complex and a homoleptic, three-coordinate CoIII complex. Interestingly, the CoIII complex exhibits an exceedingly rare S = 2 ground state. Combined XRD, magnetic susceptibility, and DFT studies highlight that terminally bound PNs engage in strong dπ–pπ interactions that present a weak ligand field appropriate to stabilize high-spin states of late transition metals. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c01400 |