Exfoliation of Nanosized α‑Zirconium Phosphate in Methanol
The exfoliation of microcrystalline α-zirconium phosphate (α-ZrP) in an organic solvent is very difficult to achieve. Surprisingly, the addition of tetra(n-butyl)ammonium hydroxide (TBAOH) into a methanol dispersion of a nanosized α-ZrP brings about the complete exfoliation of nanosheets. To under...
Saved in:
Published in | Inorganic chemistry Vol. 60; no. 11; pp. 8276 - 8284 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
07.06.2021
|
Online Access | Get full text |
Cover
Loading…
Summary: | The exfoliation of microcrystalline α-zirconium phosphate (α-ZrP) in an organic solvent is very difficult to achieve. Surprisingly, the addition of tetra(n-butyl)ammonium hydroxide (TBAOH) into a methanol dispersion of a nanosized α-ZrP brings about the complete exfoliation of nanosheets. To understand the mechanism, we examined the stepwise intercalation/exfoliation of the nanosized α-ZrP using TBAOH in four different solvents (water, methanol, ethanol, and butanol). Propionate groups on the edge of the nanosized α-ZrP prevent TBA cations from entering the galleries. Due to the formation of unstable solvent-intercalated α-ZrP with an increased interlayer distance in methanol and ethanol, TBA cations can overcome the steric hindrance and move into nanosheet layers to exchange with solvent molecules. However, the movability of the cations into the center of the galleries is preferred at a certain interlayer distance range, which leads to exfoliation of α-ZrP in methanol but intercalation only in ethanol. In water, in the beginning, neither intercalation nor exfoliation by TBA cations occurs. An additional amount of TBAOH causes the deformation of propionate groups and removes the barriers on the edges, followed by late intercalation and then exfoliation. On the other hand, butanol, as the solvent, is bulky and effectively limits the intercalation behavior of TBA cations. The weaker polarity of ethanol and butanol, compared with water and methanol, lowers the ion interactions in the solvent, which is another reason why they do not lead to exfoliation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c00968 |