Deep Convolutional Neural Networks Help Scoring Tandem Mass Spectrometry Data in Database-Searching Approaches
Spectrum annotation is a challenging task due to the presence of unexpected peptide fragmentation ions as well as the inaccuracy of the detectors of the spectrometers. We present a deep convolutional neural network, called Slider, which learns an optimal feature extraction in its kernels for scoring...
Saved in:
Published in | Journal of proteome research Vol. 20; no. 10; pp. 4708 - 4717 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spectrum annotation is a challenging task due to the presence of unexpected peptide fragmentation ions as well as the inaccuracy of the detectors of the spectrometers. We present a deep convolutional neural network, called Slider, which learns an optimal feature extraction in its kernels for scoring mass spectrometry (MS)/MS spectra to increase the number of spectrum annotations with high confidence. Experimental results using publicly available data sets show that Slider can annotate slightly more spectra than the state-of-the-art methods (BoltzMatch, Res-EV, Prosit), albeit 2–10 times faster. More interestingly, Slider provides only 2–4% fewer spectrum annotations with low-resolution fragmentation information than other methods with high-resolution information. This means that Slider can exploit nearly as much information from the context of low-resolution spectrum peaks as the high-resolution fragmentation information can provide for other scoring methods. Thus, Slider can be an optimal choice for practitioners using old spectrometers with low-resolution detectors. |
---|---|
AbstractList | Spectrum annotation is a challenging task due to the presence of unexpected peptide fragmentation ions as well as the inaccuracy of the detectors of the spectrometers. We present a deep convolutional neural network, called Slider, which learns an optimal feature extraction in its kernels for scoring mass spectrometry (MS)/MS spectra to increase the number of spectrum annotations with high confidence. Experimental results using publicly available data sets show that Slider can annotate slightly more spectra than the state-of-the-art methods (BoltzMatch, Res-EV, Prosit), albeit 2–10 times faster. More interestingly, Slider provides only 2–4% fewer spectrum annotations with low-resolution fragmentation information than other methods with high-resolution information. This means that Slider can exploit nearly as much information from the context of low-resolution spectrum peaks as the high-resolution fragmentation information can provide for other scoring methods. Thus, Slider can be an optimal choice for practitioners using old spectrometers with low-resolution detectors. |
Author | Kashkinov, Matvey Kudriavtseva, Polina Kertész-Farkas, Attila |
AuthorAffiliation | Faculty of Computer Science, HSE University |
AuthorAffiliation_xml | – name: Faculty of Computer Science, HSE University |
Author_xml | – sequence: 1 givenname: Polina surname: Kudriavtseva fullname: Kudriavtseva, Polina – sequence: 2 givenname: Matvey surname: Kashkinov fullname: Kashkinov, Matvey organization: Faculty of Computer Science, HSE University – sequence: 3 givenname: Attila orcidid: 0000-0001-8110-7253 surname: Kertész-Farkas fullname: Kertész-Farkas, Attila email: akerteszfarkas@hse.ru |
BookMark | eNqFkE9PwkAQxTcGEwH9CCZ79FLcP13aHgmomKAewHMz7E6lWHbrbqvh21tAvXp6k8x78ya_AelZZ5GQa85GnAl-CzqMtrV3DbodjrhmTHJ1RvpcSRXJjCW93znN5AUZhLBljKuEyT6xM8SaTp39dFXblM5CRZ-x9Udpvpx_D3SOVU2X2vnSvtEVWIM7-gQh0GWNuvFdaeP3dAYN0NIedQ0BoyWC15tDZlJ334HeYLgk5wVUAa9-dEhe7-9W03m0eHl4nE4WEUiRNhHnmcG4AInSmDjjqRCSgQCjeBYX6dokmSnWWmidJinLkjHLOKBU45hpFMbIIbk53e2KP1oMTb4rg8aqAouuDblQ4zETaaxYZ1Unq_YuBI9FXvtyB36fc5Yf-OYd3_yPb_7Dt8vxU-64dq3v0IV_Mt9cQYak |
CitedBy_id | crossref_primary_10_1155_2022_3627831 crossref_primary_10_1016_j_aca_2023_341330 crossref_primary_10_1002_pmic_202300145 crossref_primary_10_1186_s13000_023_01380_2 |
Cites_doi | 10.1021/pr101065j 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 10.1371/journal.pcbi.1002296 10.1021/pr101196n 10.1021/pr5010983 10.1021/pr400394g 10.1021/pr8001244 10.1038/nmeth1019 10.1002/pmic.201900334 10.1021/acs.jproteome.6b00144 10.2174/157489312800604354 10.1038/nature14539 10.1021/acs.jproteome.5b00081 10.1021/acs.jproteome.8b00991 10.1073/pnas.1705691114 10.1093/bioinformatics/btaa206 10.1038/s41592-019-0427-6 10.1074/mcp.M113.032813 10.1021/pr501173s 10.1101/831776 10.1021/acs.analchem.7b02566 10.1021/ac0258709 10.1101/2020.11.12.380881 10.1021/acs.jproteome.8b00206 10.1021/ac00104a020 10.1016/j.cels.2017.05.009 10.1021/pr800420s 10.1038/nature01511 10.1021/pr800127y 10.1016/1044-0305(94)80016-2 10.1021/pr500202e 10.1073/pnas.1530509100 10.1038/nmeth1113 10.1021/ac025747h 10.1038/ncomms6277 10.1021/pr500741y 10.1016/S1359-6446(03)02978-7 10.1021/pr301024c 10.1038/s41592-019-0426-7 10.1074/mcp.O113.036327 10.1021/pr0499491 10.1007/s13361-015-1179-x 10.1021/acs.jproteome.6b00915 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.jproteome.1c00315 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1535-3907 |
EndPage | 4717 |
ExternalDocumentID | 10_1021_acs_jproteome_1c00315 d262652385 |
GroupedDBID | - 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F ZA5 --- AAHBH AAYXX ABJNI ABQRX ADHLV BAANH CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a328t-119de4fa3e3dd49182230a2ad5194f8bd79dfbc2cc8780976091ae35640ce2dd3 |
IEDL.DBID | ACS |
ISSN | 1535-3893 |
IngestDate | Fri Aug 16 22:04:46 EDT 2024 Fri Aug 23 01:07:01 EDT 2024 Sun Oct 03 03:57:01 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | deep learning PSM scoring fast tandem mass spectrometry convolutional neural networks spectrum annotation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a328t-119de4fa3e3dd49182230a2ad5194f8bd79dfbc2cc8780976091ae35640ce2dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8110-7253 |
PQID | 2566028450 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2566028450 crossref_primary_10_1021_acs_jproteome_1c00315 acs_journals_10_1021_acs_jproteome_1c00315 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20211001 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211001 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of proteome research |
PublicationTitleAlternate | J. Proteome Res |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref43/cit43 – ident: ref7/cit7 doi: 10.1021/pr101065j – ident: ref14/cit14 doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 – ident: ref4/cit4 doi: 10.1371/journal.pcbi.1002296 – ident: ref31/cit31 – ident: ref11/cit11 doi: 10.1021/pr101196n – ident: ref19/cit19 doi: 10.1021/pr5010983 – ident: ref37/cit37 doi: 10.1021/pr400394g – ident: ref18/cit18 doi: 10.1021/pr8001244 – ident: ref41/cit41 doi: 10.1038/nmeth1019 – ident: ref32/cit32 – ident: ref26/cit26 doi: 10.1002/pmic.201900334 – ident: ref42/cit42 doi: 10.1021/acs.jproteome.6b00144 – ident: ref3/cit3 doi: 10.2174/157489312800604354 – ident: ref30/cit30 doi: 10.1038/nature14539 – ident: ref21/cit21 doi: 10.1021/acs.jproteome.5b00081 – ident: ref45/cit45 doi: 10.1021/acs.jproteome.8b00991 – ident: ref28/cit28 doi: 10.1073/pnas.1705691114 – ident: ref29/cit29 doi: 10.1093/bioinformatics/btaa206 – ident: ref47/cit47 doi: 10.1038/s41592-019-0427-6 – ident: ref38/cit38 doi: 10.1074/mcp.M113.032813 – ident: ref20/cit20 doi: 10.1021/pr501173s – ident: ref13/cit13 doi: 10.1101/831776 – ident: ref46/cit46 doi: 10.1021/acs.analchem.7b02566 – ident: ref15/cit15 doi: 10.1021/ac0258709 – ident: ref25/cit25 doi: 10.1101/2020.11.12.380881 – ident: ref34/cit34 doi: 10.1021/acs.jproteome.8b00206 – ident: ref8/cit8 doi: 10.1021/ac00104a020 – ident: ref36/cit36 doi: 10.1016/j.cels.2017.05.009 – ident: ref10/cit10 doi: 10.1021/pr800420s – ident: ref1/cit1 doi: 10.1038/nature01511 – ident: ref9/cit9 doi: 10.1021/pr800127y – ident: ref5/cit5 doi: 10.1016/1044-0305(94)80016-2 – ident: ref17/cit17 doi: 10.1021/pr500202e – ident: ref44/cit44 doi: 10.1073/pnas.1530509100 – ident: ref27/cit27 – ident: ref22/cit22 doi: 10.1038/nmeth1113 – ident: ref24/cit24 doi: 10.1021/ac025747h – ident: ref6/cit6 doi: 10.1038/ncomms6277 – ident: ref39/cit39 doi: 10.1021/pr500741y – ident: ref2/cit2 doi: 10.1016/S1359-6446(03)02978-7 – ident: ref16/cit16 doi: 10.1021/pr301024c – ident: ref23/cit23 doi: 10.1038/s41592-019-0426-7 – ident: ref33/cit33 doi: 10.1074/mcp.O113.036327 – ident: ref40/cit40 doi: 10.1021/pr0499491 – ident: ref12/cit12 doi: 10.1007/s13361-015-1179-x – ident: ref35/cit35 doi: 10.1021/acs.jproteome.6b00915 |
SSID | ssj0015703 |
Score | 2.4443421 |
Snippet | Spectrum annotation is a challenging task due to the presence of unexpected peptide fragmentation ions as well as the inaccuracy of the detectors of the... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 4708 |
Title | Deep Convolutional Neural Networks Help Scoring Tandem Mass Spectrometry Data in Database-Searching Approaches |
URI | http://dx.doi.org/10.1021/acs.jproteome.1c00315 https://search.proquest.com/docview/2566028450 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7retCLb3F9EcGTkNqmybY9LtVlEVYEFbyVvAoq2y6268Ff7yRthUVEPQVCE9rJJPOl8-ULQudQH_lcRCTRkhNGfUFiwBFkmAsjuEgkc2z36e1w8shunvhTD13-kMGnwaVQlffiRAvKmfECZd2Qr6BVGsEEsVgovf9KG1g5qUYglRMbibsjOz91Y0OSqpZD0vKK7MLMeBPddYd1GnbJq7eopac-vms3_vULttBGCznxqPGRbdQzxQ5aS7ub3nZRcWXMHKdl8d76ITxtRTtc4VjiFYbwNMf3ytH18IP98zzDUwDe2F5gX1vNA-gKX4la4OfClTY-kobNbNuMWvFyU-2hx_H1Qzoh7T0MRIQ0rkkQJNqwXIQm1JolsCOBfYugQgP6Y3ksdZToXCqqVBzFPuAbwCDChHzIfGWo1uE-6hdlYQ4Q5jJRRgIkY8JKvXFpOKwakubMF0kcsQG6AGtl7TyqMpcip0HmKjsTZq0JB8jrxi2bN9ocvzU460Y3AxPb1IgoTLmoMgB-Q0BajPuH_3mDI7ROLcfFkfuOUb9-W5gTACm1PHWO-QmubOXY |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHODCjiirkTghuWSxsxxRoSpLuVAEt8hbJEBNK5Jy4OsZuwkIJIR6smTFljOe-D1nxs8AJ1gfe1zENNWSUxZ4gibII2iUCyO4SCVz2e79u6j3wK6f-NMcRM1ZGBxEiT2VLoj_rS7gn9m6F6ddMBqatq-sN_J5WOQxgqalRJ37r-iBVZWa6qRyagG5ObnzVzcWmVT5E5l-LswObbqr8Pg1Tpdk8tqeVLKtPn5JOM7-ImuwUhNQcj71mHWYM8UGLHWae982obgwZkw6o-K99kp82kp4uMLljJcEwWpM7pVL3iMD-x96SPpIw4m9zr6yCgjYFbkQlSDPhSstWtJpbrNtc15LmZtyCx66l4NOj9a3MlARBklFfT_VhuUiNKHWLMX9Ce5iRCA0ckGWJ1LHqc6lCpRK4sRDtoOMRJiQR8xTJtA63IaFYlSYHSBcpspIJGhMWOE3Lg3HNUQGOfNEmsSsBadoraz-qsrMBcwDP3OVjQmz2oQtaDfTl42nSh3_NThuJjlDE9tAiSjMaFJmSAMj5F2Me7uzjOAIlnqD_m12e3V3swfLgc1-cWl_-7BQvU3MAdKXSh46X_0ElsfuPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QX3xLs5rBJ-EzF6StX0cm2NeNoRtMPCh5FZQWTds54O_3pOsHUwQ0adCaEJ6cpLzpefLF4SuoDxwGA9IpAQj1HM4CQFHkHrCNWc8EtSy3bu9emdI70dsVLAqzVkY6EQGLWU2iW9m9VQlhcKAe2PKX61-wWSsa640HslW0RoLXJuibTT7iwyCUZaaa6UyYoJyeXrnp2ZMdJLZcnRaXpxtxGlvo-dFXy3R5K02y0VNfn6Tcfzfx-ygrQKI4sbcc3bRik730EazvP9tH6Utrae4OUk_Cu-Et42Uh31Y7niGIWhNcV9aEh8emP_RY9wFOI7Ntfa5UUKApnCL5xy_pPZpoiaZc5xNnUYhaa6zAzRs3w6aHVLczkC474U5cd1IaZpwX_tK0Qj2KbCb4R5XgAlpEgoVRCoR0pMyDEIHUA8gE659VqeO1J5S_iGqpJNUHyHMRCS1AKBGuRGAY0IzWEuEl1CHR2FAq-garBUXsyuLbeLcc2NbWJowLkxYRbVyCOPpXLHjtwqX5UDHYGKTMOGpnsyyGOBgHfAXZc7xX3pwgdafWu348a73cII2PUOCsey_U1TJ32f6DFBMLs6tu34BJ8_wtw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Neural+Networks+Help+Scoring+Tandem+Mass+Spectrometry+Data+in+Database-Searching+Approaches&rft.jtitle=Journal+of+proteome+research&rft.au=Kudriavtseva%2C+Polina&rft.au=Kashkinov%2C+Matvey&rft.au=Kert%C3%A9sz-Farkas%2C+Attila&rft.date=2021-10-01&rft.eissn=1535-3907&rft.volume=20&rft.issue=10&rft.spage=4708&rft.epage=4717&rft_id=info:doi/10.1021%2Facs.jproteome.1c00315&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon |