Deep Convolutional Neural Networks Help Scoring Tandem Mass Spectrometry Data in Database-Searching Approaches
Spectrum annotation is a challenging task due to the presence of unexpected peptide fragmentation ions as well as the inaccuracy of the detectors of the spectrometers. We present a deep convolutional neural network, called Slider, which learns an optimal feature extraction in its kernels for scoring...
Saved in:
Published in | Journal of proteome research Vol. 20; no. 10; pp. 4708 - 4717 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Spectrum annotation is a challenging task due to the presence of unexpected peptide fragmentation ions as well as the inaccuracy of the detectors of the spectrometers. We present a deep convolutional neural network, called Slider, which learns an optimal feature extraction in its kernels for scoring mass spectrometry (MS)/MS spectra to increase the number of spectrum annotations with high confidence. Experimental results using publicly available data sets show that Slider can annotate slightly more spectra than the state-of-the-art methods (BoltzMatch, Res-EV, Prosit), albeit 2–10 times faster. More interestingly, Slider provides only 2–4% fewer spectrum annotations with low-resolution fragmentation information than other methods with high-resolution information. This means that Slider can exploit nearly as much information from the context of low-resolution spectrum peaks as the high-resolution fragmentation information can provide for other scoring methods. Thus, Slider can be an optimal choice for practitioners using old spectrometers with low-resolution detectors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1535-3893 1535-3907 |
DOI: | 10.1021/acs.jproteome.1c00315 |