Hypogene and supergene alteration of the Late Palaeozoic Ratburi Limestone during the Mesozoic and Cenozoic (Thailand, Surat Thani Province). Implications for the concentration of mineral commodities and hydrocarbons

An interdisciplinary study of the Upper Carboniferous to Middle Permian Ratburi Group, Peninsular Thailand, is presented. The investigation involved sedimentary petrography, inorganic geochemistry, Sr, C, O isotope analyses, micropalaeontology as well as radio-carbon age dating. Emphasis was placed...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of earth sciences : Geologische Rundschau Vol. 94; no. 1; pp. 24 - 46
Main Authors Dill, H. G., Botz, R., Luppold, F. W., Henjes-Kunst, F.
Format Journal Article
LanguageEnglish
Published Berlin Springer Nature B.V 01.02.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An interdisciplinary study of the Upper Carboniferous to Middle Permian Ratburi Group, Peninsular Thailand, is presented. The investigation involved sedimentary petrography, inorganic geochemistry, Sr, C, O isotope analyses, micropalaeontology as well as radio-carbon age dating. Emphasis was placed on the post-depositional evolution of the Ratburi Limestone in the Surat Thani Province. The Holocene chemical residues and the various calcite and dolomite minerals which have formed since the Late Palaeozoic in the Ratburi Limestone are the product of a complex, multistage alteration which is called supergene and hypogene karstifications, respectively. Sedimentation took place in a shelf environment with some reefs evolving during the late Murgabian at the shelf margin. There was no pre-concentration of elements, except for Ca and F during sedimentation. Diagenetic neomorphism and cementation under marine and freshwater conditions caused the Ratburi Limestone to convert into a marble-like rock. Fabric-selective dolomitization is of local scale and has impacted only on part of the Ratburi Limestone during the Lower to Upper Permian. A significant enhancement of pore space and better conduits were generated during the Late Cretaceous epithermal alteration. The most favorable conditions for the accumulation of metals were provided during the high-temperature stage of epithermal alteration when a low-metal concentration with As, Zn, Sb, U, Co and Pb existed. Unlike the other elements, Sb was subject to a multiphase concentration, giving rise to a considerable Sb deposit in the region. The most recent stage of karstification produced numerous caves, dripstones, tufa terraces and encrustations around brine pools in the study area. This alteration originated from per descensum and per ascensum processes which may be traced back to 15,000 years before present. The alteration of the Ratburi Limestone may be subdivided into two parts. The prograde post-depositional alteration, beginning with diagenesis, reached its temperature climax during epithermal subsurface alteration I. The retrograde branch of alteration lasted until the most recent times. The initial stages deposition and diagenesis took place under more or less closed-system conditions relative to the succeeding stages of the prograde alteration which saw the strongest influx of metal-bearing brine during the epithermal stage I. The retrograde branch of alteration is "element-conservative".[PUBLICATION ABSTRACT]
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1437-3254
1437-3262
DOI:10.1007/s00531-004-0439-y