Interface Visualization of Bio-material Interaction Via Cryo-AEM Using the Biosynthesis of Iron-Based Nanoparticles as a Model

Although interaction between organisms and nonorganisms is vital in environmental processes, it is difficult to characterize at nanoscale resolution. Biosynthesis incorporates intracellular and extracellular processes involving crucial interfacial functions and electron and substance transfer proces...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 96; no. 24; pp. 9756 - 9760
Main Authors Xu, Qianyu, Ling, Lan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although interaction between organisms and nonorganisms is vital in environmental processes, it is difficult to characterize at nanoscale resolution. Biosynthesis incorporates intracellular and extracellular processes involving crucial interfacial functions and electron and substance transfer processes, especially on the inorganic–organic interface. This work chooses the biosynthesis of iron-based nanoparticles (nFe) as a model for biomaterial interaction and employs Cryo-AEM (i.e., S/TEM, EELS, and EDS analysis based on sample preparation with cryo-transfer holder system), combined with CV, Raman, XPS, and FTIR to reveal the inorganic–organic interface process. The inorganic–organic interactions in the biosynthesis of iron-based nanoparticles by Shewanella oneidensis MR-1 (M-nFe) were characterized by changes in electron cloud density, and the corresponding chemical shifts of Fe and C EELS edges confirm that M-nFe acquires electrons from MR-1 on the interface. Capturing intact filamentous-like, slightly curved, and bundled structure provides solid evidence of a “circuit channel” for electron transfer between organic and inorganic interface. CV results also confirm that adding M-nFe can enhance electron transfer from MR-1 to ferric ions. A mechanism for the synthesis of M-nFe with MR-1 based on intracellular and extracellular conditions under facultative anaerobic was visualized, providing a protocol for investigating the organic–inorganic interface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.3c05877