Pulsed Laser Deposition of Epitaxial and Polycrystalline Bismuth Vanadate Thin Films
We report pulsed laser deposition (PLD) synthesis of epitaxial and polycrystalline monoclinic bismuth vanadate (BiVO4, BVO) thin films. X-ray diffraction (XRD), atomic force microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy were used to characterize the samples. Epitaxia...
Saved in:
Published in | Journal of physical chemistry. C Vol. 118; no. 46; pp. 26543 - 26550 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
20.11.2014
|
Online Access | Get full text |
Cover
Loading…
Summary: | We report pulsed laser deposition (PLD) synthesis of epitaxial and polycrystalline monoclinic bismuth vanadate (BiVO4, BVO) thin films. X-ray diffraction (XRD), atomic force microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy were used to characterize the samples. Epitaxial, c-axis oriented growth was achieved using single crystal yttria-stabilized zirconia (100), a substrate temperature of 575–600 °C, and an oxygen pressure of 7.8 mTorr. The volatility of Bi necessitated a large excess (Bi:V = ∼6:1) of this element in the ceramic targets to obtain stoichiometric films. XRD confirmed a BVO (001)||YSZ (001) and BVO [100]||YSZ [100] epitaxial relationship. Film growth was 3-D, and the morphology was discontinuous, consisting of irregular, smooth grains. Additionally, dense, continuous polycrystalline films were deposited on fluorine-doped tin oxide (FTO) on glass substrates at room temperature with stoichiometric targets and postdeposition annealing in air. Evaluation of these samples as photoanodes yielded photocurrents of ∼0.15 and ∼0.05 mA cm–2 at 1.23 V vs RHE under backside AM1.5G illumination with and without a hole scavenger (Na2SO3), respectively. We argue that the photocurrents are due to the high oxygen content inherent in the PLD process and suggest that these continuous films may be well-suited to investigating oxygen-related defects in BVO. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp5082824 |