A Fully Integrated Handheld Electrochemical Sensing Platform for Point-of-Care Testing of Escherichia coli O157:H7
Fully integrated devices that enable full functioning execution without or with minimum external accessories or equipment are deemed to be one of the most desirable and ultimate objectives for modern device design and construction. Escherichia coli O157:H7 (E. coli O157:H7) is often linked to outbre...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 96; no. 13; pp. 5340 - 5347 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fully integrated devices that enable full functioning execution without or with minimum external accessories or equipment are deemed to be one of the most desirable and ultimate objectives for modern device design and construction. Escherichia coli O157:H7 (E. coli O157:H7) is often linked to outbreaks caused by contaminated water and food. However, the sensors that are currently used for point-of-care E. coli O157:H7 (E. coli O157:H7) detection are often large and cumbersome. Herein, we demonstrate the first example of a handheld and pump-free fully integrated electrochemical sensing platform with the capability to point-of-care test E. coli O157:H7 in the actual samples of E. coli O157:H7-spiked tap water and E. coli O157:H7-spiked watermelon juice. This platform was made possible by overcoming major engineering challenges in the seamless integration of a microfluidic module for pump-free liquid sample collection and transportation, a sensing module for efficient E. coli O157:H7 testing, and an electronic module for automatically converting and wirelessly transmitting signals into a single and compact electrochemical sensing platform that retains its inimitable stand-alone, handheld, pump-free, and cost-effective feature. Although our primary emphasis in this study is on detecting E. coli O157:H7, this pump-free fully integrated handheld electrochemical sensing platform may also be used to monitor other pathogens in food and water by including specific antipathogen antibodies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0003-2700 1520-6882 1520-6882 |
DOI: | 10.1021/acs.analchem.4c00776 |