Semisynthesis of a Bacterium with Non-canonical Cell-Wall Cross-Links
The cell wall is an elaborate framework of peptidoglycan that serves to protect the bacterium against osmotic challenge. This exoskeleton is composed of repeating saccharides covalently cross-linked by peptide stems. The general structure of the cell wall is widely conserved across diverse Gram-nega...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 25; pp. 10910 - 10913 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The cell wall is an elaborate framework of peptidoglycan that serves to protect the bacterium against osmotic challenge. This exoskeleton is composed of repeating saccharides covalently cross-linked by peptide stems. The general structure of the cell wall is widely conserved across diverse Gram-negative bacteria. To begin to explore the biological consequence of introducing non-canonical cross-links into the cell wall of Escherichia coli, we generated a bacterium where up to 31% of the cell-wall cross-links are formed by a non-enzymatic reaction between a sulfonyl fluoride and an amino group. Bacteria with these non-canonical cell-wall cross-links achieve a high optical density in culture, divide and elongate successfully, and display no loss of outer membrane integrity. This work represents a first step in the design of bacteria with non-canonical “synthetic” cell walls. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c02956 |