Evolutionary full-waveform inversion
SUMMARY We present a new approach to full-waveform inversion (FWI) that enables the assimilation of data sets that expand over time without the need to reinvert all data. This evolutionary inversion rests on a reinterpretation of stochastic Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS), w...
Saved in:
Published in | Geophysical journal international Vol. 224; no. 1; pp. 306 - 311 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | SUMMARY
We present a new approach to full-waveform inversion (FWI) that enables the assimilation of data sets that expand over time without the need to reinvert all data. This evolutionary inversion rests on a reinterpretation of stochastic Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS), which randomly exploits redundancies to achieve convergence without ever considering the data set as a whole. Specifically for seismological applications, we consider a dynamic mini-batch stochastic L-BFGS, where the size of mini-batches adapts to the number of sources needed to approximate the complete gradient. As an illustration we present an evolutionary FWI for upper-mantle structure beneath Africa. Starting from a 1-D model and data recorded until 1995, we sequentially add contemporary data into an ongoing inversion, showing how (i) new events can be added without compromising convergence, (ii) a consistent measure of misfit can be maintained and (iii) the model evolves over times as a function of data coverage. Though applied retrospectively in this example, our method constitutes a possible approach to the continuous assimilation of seismic data volumes that often tend to grow exponentially. |
---|---|
ISSN: | 0956-540X 1365-246X |
DOI: | 10.1093/gji/ggaa459 |