Nucleation and Growth Mode of Solid Electrolyte Interphase in Li-Ion Batteries

The solid electrolyte interphase (SEI) is regarded as the most important yet least understood component in Li-ion batteries. Considerable effort has been devoted to unravelling its chemistry, structure, and ion-transport mechanism; however, the nucleation and growth mode of SEI, which underlies all...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 14; pp. 8001 - 8006
Main Authors Yao, Yu-Xing, Wan, Jing, Liang, Ning-Yan, Yan, Chong, Wen, Rui, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.04.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:The solid electrolyte interphase (SEI) is regarded as the most important yet least understood component in Li-ion batteries. Considerable effort has been devoted to unravelling its chemistry, structure, and ion-transport mechanism; however, the nucleation and growth mode of SEI, which underlies all these properties, remains the missing piece. We quantify the growth mode of two representative SEIs on carbonaceous anodes based on classical nucleation theories and in situ atomic force microscopy imaging. The formation of inorganic SEI obeys the mixed 2D/3D growth model and is highly dependent on overpotential, whereby large overpotential favors 2D growth. Organic SEI strictly follows the 2D instantaneous nucleation and growth model regardless of overpotential and enables perfect epitaxial passivation of electrodes. We further demonstrate the use of large current pulses during battery formation to promote 2D inorganic SEI growth and improve capacity retention. These insights offer the potential to tailor desired interphases at the nanoscale for future electrochemical devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.2c13878