Low-Loss, High-Transparency Luminescent Solar Concentrators with a Bioinspired Self-Cleaning Surface
Luminescent solar concentrators (LSCs) have emerged as a disruptive technology that can potentially enable carbon-neutral buildings. The issues with current LSCs, however, are low optical efficiencies and limited long-term outdoor stability. Here we simultaneously address them by developing an LSC w...
Saved in:
Published in | The journal of physical chemistry letters Vol. 13; no. 39; pp. 9177 - 9185 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
06.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Luminescent solar concentrators (LSCs) have emerged as a disruptive technology that can potentially enable carbon-neutral buildings. The issues with current LSCs, however, are low optical efficiencies and limited long-term outdoor stability. Here we simultaneously address them by developing an LSC with aggregation-induced-emission (AIE) molecules embedded in a polydimethylsiloxane (PDMS) matrix. The AIE-emitter displayed a near unity emission quantum yield when embedded in the PDMS and the apparent absorption-emission Stokes shift reached 0.59 eV, effectively suppressing the reabsorption loss of waveguided photons inside an LSC. Moreover, the surface texture of the PDMS matrix was engineered using a bioinspired nanolithography method with a natural lotus leaf as the template. This allowed the fabricated AIE-PDMS LSC to inherit the superhydrophobic, self-cleaning properties of the leaf and meanwhile to possess a light-trapping capability. Our 100 cm2 LSC, when coupled with commercial Si PVs, delivered efficient solar power conversion, high visible transmittance, and high working stability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.2c02666 |