Mo-Doped Zn, Co Zeolitic Imidazolate Framework-Derived Co9S8 Quantum Dots and MoS2 Embedded in Three-Dimensional Nitrogen-Doped Carbon Nanoflake Arrays as an Efficient Trifunctional Electrocatalysts for the Oxygen Reduction Reaction, Oxygen Evolution Reaction, and Hydrogen Evolution Reaction

Herein, we first propose a facile strategy to synthesize Co9S8 and MoS2 nanocrystals embedded in porous carbon nanoflake arrays supported on carbon nanofibers (Co9S8-MoS2/N-CNAs@CNFs) by the pyrolysis of Mo-doped Zn, Co zeolitic imidazolate framework grown on carbon nanofibers and subsequent sulfura...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 9; pp. 10280 - 10290
Main Authors Zhang, Wenming, Zhao, Xinyan, Zhao, Youwei, Zhang, Jiaqing, Li, Xiaoting, Fang, Lide, Li, Ling
Format Journal Article
LanguageEnglish
Published American Chemical Society 04.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Herein, we first propose a facile strategy to synthesize Co9S8 and MoS2 nanocrystals embedded in porous carbon nanoflake arrays supported on carbon nanofibers (Co9S8-MoS2/N-CNAs@CNFs) by the pyrolysis of Mo-doped Zn, Co zeolitic imidazolate framework grown on carbon nanofibers and subsequent sulfuration. The electrocatalyst shows high and stable electrocatalytic performance, with a half-wave potential of 0.82 V for oxygen reduction reaction and an overpotential at 10 mA cm–2 for oxygen evolution reaction (0.34 V) and hydrogen evolution reaction (0.163 V), which outperform the metal–organic framework-derived transition metal sulfide catalysts reported so far. Furthermore, the Co9S8-MoS2@N-CNAs@CNFs are employed as an air cathode in a liquid-state and all-solid-state zinc-air battery, presenting high power densities of 222 and 96 mW cm–2, respectively. Such excellent catalytic activities are mainly owing to the unique three-dimensional structure and chemical compositions, optimal electronic conductivity, adequate surface area, and the abundance of active sites. Thus, this work provides an important method for designing other metal–organic framework-derived three-dimensional structural sulfide quantum dot multifunctional electrocatalysts for wider application in highly efficient catalysis and energy storage.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.9b19193