Density Functional Theory Half-Electron Self-Energy Correction for Fast and Accurate Nonadiabatic Molecular Dynamics
The nonadiabatic (NA) process is crucial to photochemistry and photophysics and requires an atomistic understanding. However, conventional NA molecular dynamics (MD) for condensed-phase materials on the nanoscale are generally limited to the semilocal exchange-correlation functional, which suffers f...
Saved in:
Published in | The journal of physical chemistry letters Vol. 12; no. 44; pp. 10886 - 10892 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
11.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The nonadiabatic (NA) process is crucial to photochemistry and photophysics and requires an atomistic understanding. However, conventional NA molecular dynamics (MD) for condensed-phase materials on the nanoscale are generally limited to the semilocal exchange-correlation functional, which suffers from the bandgap and thus NA coupling (NAC) problems. We consider TiO2 and a black phosphorus monolayer as two prototypical systems, perform NA-MD simulations of nonradiative electron–hole recombination, and demonstrate for the first time that density functional theory (DFT) half-electron self-energy correction can reproduce the bandgap, effective masses of carriers, luminescence line widths, NAC, and excited-state lifetimes of the two systems at the hybrid functional level while the computational cost remains at that of the Predew–Burke–Ernzerhof functional. Our study indicates that the DFT-1/2 method can greatly accelerate NA-MD simulations while maintaining the accuracy of the hybrid functional, providing an advantage for studying photoexcitation dynamics for large-scale condensed-phase materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.1c03077 |