Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes

Highly ultramicroporous, solution-processable polyimides bearing 9,10-bridgehead-substituted triptycene demonstrated the highest BET surface area reported for polyimides (840 m2 g–1) and several new highs in gas selectivity and permeability for hydrogen (1630–3980 barrers, H2/CH4 ∼ 38) and air (230–...

Full description

Saved in:
Bibliographic Details
Published inMacromolecules Vol. 47; no. 15; pp. 5104 - 5114
Main Authors Swaidan, Raja, Al-Saeedi, Majed, Ghanem, Bader, Litwiller, Eric, Pinnau, Ingo
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 12.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Highly ultramicroporous, solution-processable polyimides bearing 9,10-bridgehead-substituted triptycene demonstrated the highest BET surface area reported for polyimides (840 m2 g–1) and several new highs in gas selectivity and permeability for hydrogen (1630–3980 barrers, H2/CH4 ∼ 38) and air (230–630 barrers, O2/N2 = 5.5–5.9) separations. Two new dianhydrides bearing 9,10-diethyl- and 9,10-dipropyltriptycenes indicate that the ultramicroporosity is optimized for fast polymeric sieving with the use of short, bulky isopropyl bridgeheads and methyl-substituted diamines (TrMPD, TMPD, and TMBZ) that increase intrachain rigidity. Mechanically, the triptycene-based analogue of a spirobisindane-based polyimide exhibited 50% increases in both tensile strength at break (94 MPa) and elastic modulus (2460 MPa) with corresponding 90% lower elongations at break (6%) likely due to the ability of highly entangled spiro-based chains to unwind. To guide future polyimide design, structure/property relationships are suggested between the geometry of the contortion center, the diamine and bridgehead substituent, and the mechanical, microstructural, and gas transport properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0024-9297
1520-5835
1520-5835
DOI:10.1021/ma5009226