Probing the Structural Evolution of Gold–Aluminum Bimetallic Clusters (Au2Al n –, n = 3–11) Using Photoelectron Spectroscopy and Theoretical Calculations

We report a combined photoelectron spectroscopy and theoretical study of the structural evolution of aluminum cluster anions doped with two gold atoms, Au2Al n – (n = 3–11). Well-resolved photoelectron spectra have been obtained at several photon energies and are used to compare with theoretical cal...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 121; no. 33; pp. 18234 - 18243
Main Authors Khetrapal, Navneet Singh, Jian, Tian, Lopez, Gary V, Pande, Seema, Wang, Lai-Sheng, Zeng, Xiao Cheng
Format Journal Article
LanguageEnglish
Published American Chemical Society 24.08.2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a combined photoelectron spectroscopy and theoretical study of the structural evolution of aluminum cluster anions doped with two gold atoms, Au2Al n – (n = 3–11). Well-resolved photoelectron spectra have been obtained at several photon energies and are used to compare with theoretical calculations to elucidate the structures of the bimetallic clusters. Global minima of the Au2Al n – clusters were searched using the basin-hopping method combined with density functional theory calculations. Vertical detachment energies were computed for the low-lying isomers with the inclusion of spin–orbit effects and were used to generate simulated photoelectron spectra. Au2Al2 – was previously found to exhibit a tetrahedral structure, whereas Au2Al3 – is found currently to be planar. Beyond n = 3, the global minima of Au2Al n – are dominated by three-dimensional structures. A robust square-bipyramidal Al6 motif is observed for n = 6–9, leading to a highly stable tubular-like global minimum for Au2Al9 –. Compact three-dimensional structures are observed for n = 10 and 11. Except for Au2Al4 –, Au2Al6 –, and Au2Al7 –, the two gold atoms are separated in these digold-atom-doped aluminum clusters due to the strong Au–Al interactions.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.7b04997