Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review

In the past decade, atomic layer deposition (ALD) has become an important thin film deposition technique for applications in nanoelectronics, catalysis, and other areas due to its high conformality on 3-D nanostructured substrates and control of the film thickness at the atomic level. The current ap...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 31; no. 4; pp. 1142 - 1183
Main Authors Mackus, Adriaan J. M, Schneider, Joel R, MacIsaac, Callisto, Baker, Jon G, Bent, Stacey F
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.02.2019
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the past decade, atomic layer deposition (ALD) has become an important thin film deposition technique for applications in nanoelectronics, catalysis, and other areas due to its high conformality on 3-D nanostructured substrates and control of the film thickness at the atomic level. The current applications of ALD primarily involve binary metal oxides, but for new applications there is increasing interest in more complex materials such as doped, ternary, and quaternary materials. This article reviews how these multicomponent materials can be synthesized by ALD, gives an overview of the materials that have been reported in the literature to date, and discusses important challenges. The most commonly employed approach to synthesize these materials is to combine binary ALD cycles in a supercycle, which provides the ability to control the composition of the material by choosing the cycle ratio. Discussion will focus on four main topics: (i) the characteristics, benefits, and drawbacks of the approaches that currently exist for the synthesis of multicomponent materials, with special attention to the supercycle approach; (ii) the trends in precursor choice, process conditions, and characterization methods, as well as underlying motivations for these design decisions; (iii) the distribution of atoms in the deposited material and the formation of specific (crystalline) phases, which is shown to be dependent on the ALD cycle sequence, deposition temperature, and post-deposition anneal conditions; and (iv) the nucleation effects that occur when switching from one binary ALD process to another, with different explanations provided for why the growth characteristics often deviate from what is expected. This paper provides insight into how the deposition conditions (cycle sequence, temperature, etc.) affect the properties of the resultant thin films, which can serve as a guideline for designing new ALD processes. Furthermore, with an extensive discussion on the nucleation effects taking place during the growth of ternary materials, we hope to contribute to a better understanding of the underlying mechanisms of the ALD growth of multicomponent materials.
Bibliography:SC0004782
USDOE Office of Science (SC)
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.8b02878