Self-similarity and multiwavelets in higher dimension

Let $A$ be a dilation matrix, an$n \times n$ expansive matrix that maps a full-rank lattice $\Gamma \subset \R^n$ into itself. Let $\Lambda$ be a finite subset of$\Gamma$, and for $k \in \Lambda$ let $c_k$ be $r \times r$ complex matrices. The refinement equation corresponding to $A$,$\Gamma$, $\Lam...

Full description

Saved in:
Bibliographic Details
Main Authors Cabrelli, Carlos A, Heil, Christopher, Molter, Ursula M
Format eBook
LanguageEnglish
Published Providence, R.I American Mathematical Society 2004
SeriesMemoirs of the American Mathematical Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let $A$ be a dilation matrix, an$n \times n$ expansive matrix that maps a full-rank lattice $\Gamma \subset \R^n$ into itself. Let $\Lambda$ be a finite subset of$\Gamma$, and for $k \in \Lambda$ let $c_k$ be $r \times r$ complex matrices. The refinement equation corresponding to $A$,$\Gamma$, $\Lambda$, and $c = \set{c_k}_{k \in \Lambda}$ is $f(x) = \sum_{k \in \Lambda} c_k \, f(Ax-k)$. A solution $f \colon \R^n \to \C^r$, if one exists, is called a refinable vector function or a vector scaling function of multiplicity $r$. In this manuscript we characterize the existence of compactly supported $L^p$ or continuous solutions of the refinement equation, in terms of the $p$-norm joint spectral radius of a finite set of finite matrices determined by the coefficients $c_k$.We obtain sufficient conditions for the $L^p$ convergence ($1 \le p \le \infty$) of the Cascade Algorithm $f^{(i+1)}(x) = \sum_{k \in \Lambda} c_k \, f^{(i)}(Ax-k)$, and necessary conditions for the uniform convergence of the Cascade Algorithm to a continuous solution. We also characterize those compactly supported vector scaling functions which give rise to a multiresolution analysis for $L^2(\R^n)$ of multiplicity $r$, and provide conditions under which there exist corresponding multiwavelets whose dilations and translations form an orthonormal basis for $L^2(\R^n)$.
Bibliography:Volume 170, number 807 (end of volume).
Access is restricted to licensed institutions
Electronic reproduction.
Providence, Rhode Island
Description based on print version record.
American Mathematical Society.
2012
Includes bibliographical references (p. 77-80) and index.
Mode of access : World Wide Web
ISBN:9780821835203
0821835203