Oral Administration of Bovine Lactoferrin-Derived Lactoferricin (Lfcin) B Could Attenuate Enterohemorrhagic Escherichia coli O157:H7 Induced Intestinal Disease through Improving Intestinal Barrier Function and Microbiota

Lactoferricin (Lfcin) B, derived from lactoferrin in whey, has attracted considerable attention because of its multiple biological functions. Zoonotic enterohemorrhagic Escherichia coli (EHEC) O157:H7 has adverse effects on intestinal epithelial barrier function, leading to serious intestinal diseas...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 67; no. 14; pp. 3932 - 3945
Main Authors Haiwen, Zhang, Rui, Hua, Bingxi, Zhang, Qingfeng, Guan, Jifeng, Zeng, Xuemei, Wang, Beibei, Wang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lactoferricin (Lfcin) B, derived from lactoferrin in whey, has attracted considerable attention because of its multiple biological functions. Zoonotic enterohemorrhagic Escherichia coli (EHEC) O157:H7 has adverse effects on intestinal epithelial barrier function, leading to serious intestinal disease. In this study, the EHEC O157:H7-induced intestinal dysfunction model was developed to investigate the effects of Lfcin B on EHEC O157:H7-induced epithelial barrier disruption and microbiota dysbiosis. Results showed that the inflammatory infiltration indexes in the jejunum of Lfcin B-treated animals were significantly decreased. Lfcin B administration also significantly improved ZO-1 and occludin expression following O157:H7-induced injury. Finally, microbiota analysis of the cecal samples revealed that Lfcin B inhibited the O157:H7-induced abnormal increase in Bacteroides. Therefore, Lfcin B efficiently attenuated O157:H7-induced epithelial barrier damage and dysregulation of inflammation status, while maintaining microbiota homeostasis in the intestine, indicating that it may be an excellent food source for prevention and therapy of EHEC O157:H7-related intestinal dysfunction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.9b00861