Plate tectonic control of strontium concentration in Phanerozoic and Neoproterozoic seawater: Evidence from fluid inclusions in marine halite

Chemical analyses of 1371 fluid inclusions in 131 halite samples with marine 87Sr/86Sr values were used to reconstruct the strontium concentrations [Sr]SW of Phanerozoic and Neoproterozoic seawater. [Sr]SW varied seven-fold and oscillated twice between high- and low-Sr concentrations over the past 5...

Full description

Saved in:
Bibliographic Details
Published inGeochimica et cosmochimica acta Vol. 346; pp. 165 - 179
Main Authors Weldeghebriel, Mebrahtu F., Lowenstein, Tim K., Xia, Zhiguang, Li, Weiqiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chemical analyses of 1371 fluid inclusions in 131 halite samples with marine 87Sr/86Sr values were used to reconstruct the strontium concentrations [Sr]SW of Phanerozoic and Neoproterozoic seawater. [Sr]SW varied seven-fold and oscillated twice between high- and low-Sr concentrations over the past 550 million years (Myr), in rhythm with Ca-rich and SO4-poor paleoseawater intervals and calcite-aragonite seas. Variations in the [Sr]/[Ca]SW ratio from fluid inclusions were not significant over the past ∼270 Myr, and are within ±3 µmol/mmol of the modern [Sr]/[Ca]SW ratio of ∼8.5 µmol/mmol. These results agree with the [Sr]/[Ca]SW ratios obtained from fossil corals, benthic foraminifera, brachiopods, belemnites, and rudists. [Sr]/[Ca]SW in the early and middle Paleozoic was ∼2 times the modern [Sr]/[Ca]SW ratio. A major shift of the [Sr]/[Ca]SW ratio in the late Permian coincided with the initial rifting of the Pangean supercontinent. Seawater 87Sr/86Sr ratios plotted against 1/[Sr]SW show two distinct linear correlations: negative correlation from 515 to 252 Ma and positive correlation from 150 to 0 Ma, suggesting different controls on the global Sr cycle between these intervals. The negative correlation coincides with the long-term assembly of Pangea in the Paleozoic (∼500–250 Ma). The positive correlation from 150 to 0 Ma parallels the break-up of Pangea and the decrease of mid-ocean ridge (MOR) hydrothermal fluid flux and subduction zone length in the Mesozoic and Cenozoic.
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2023.02.009