Dual Confinement of CoSe2 Nanorods with Polyphosphazene-Derived Heteroatom-Doped Carbon and Reduced Graphene Oxide for Potassium-Ion Batteries

High-capacity and highly stable anode materials are some of the keys to the realization of the application of potassium-ion batteries (PIBs). Cobalt diselenide (CoSe2) has been regarded as a high-potential anode material for PIBs. However, solving the problems of sluggish kinetics and large volumetr...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 6; no. 26; pp. 17113 - 17125
Main Authors Zhao, Zhongshu, Gao, Chenqi, Fan, Jinchen, Shi, Penghui, Xu, Qunjie, Min, Yulin
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.07.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-capacity and highly stable anode materials are some of the keys to the realization of the application of potassium-ion batteries (PIBs). Cobalt diselenide (CoSe2) has been regarded as a high-potential anode material for PIBs. However, solving the problems of sluggish kinetics and large volumetric expansion during intercalation/deintercalation of K+ ions is always very challenging in terms of cobalt diselenide-based anode materials. Herein, reduced graphene oxide-encapsulated polyphosphazene-derived S, P, and N codoped carbon (SPNC)-coated CoSe2 nanorods (CoSe2⊂SPNC⊂rGO) were designed as PIB anode materials. CoSe2⊂SPNC⊂rGO delivers an excellent reversible capacity of 287.2 mAh g–1 at 100 mA g–1. Benefiting from the coating of heteroatom-doped carbon and encapsulation of rGO, the CoSe2⊂SPNC⊂rGO anodes exhibit a remarkable rate capability (100–1500 mA g–1 current density) and high stability (208.8 mAh g–1 after 500 cycles at 500 mA g–1). The results demonstrate that S, P, and N codoping in carbon layers provides active sites for K+ ion storage and increases the electrical conductivity. More importantly, the dual confinement of CoSe2 nanorods with carbon layers and rGO significantly reduced the volume expansion and kept the electrode structural integrity with repeating intercalation/deintercalation of K+ ions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c02649