You can bring plankton to fecal indicator organisms, but you cannot make the plankton graze: particle contribution to E. coli and MS2 inactivation in surface waters

Organisms that are associated with feces ("fecal indicator organisms") are monitored to assess the potential for fecal contamination of surface water bodies in the United States. However, the effect of the complex mixtures of chemicals and the natural microbial community within surface wat...

Full description

Saved in:
Bibliographic Details
Published inmSphere Vol. 9; no. 10; p. e0065624
Main Authors Kennedy, Lauren C, Mattis, Ava M, Boehm, Alexandria B
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 03.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Organisms that are associated with feces ("fecal indicator organisms") are monitored to assess the potential for fecal contamination of surface water bodies in the United States. However, the effect of the complex mixtures of chemicals and the natural microbial community within surface water ("particles") on fecal indicator organism persistence is not well characterized. We aimed to better understand how particles, including biological (e.g., potential grazers) and inert (e.g., minerals) types, affect the fecal indicator organisms K-12 (" ") and bacteriophage MS2 in surface waters. A gradient of particles captured by a 0.2-µm-pore-size filter ("large particles") was generated, and the additional particles and dissolved constituents that passed through the filter were deemed "small particles." We measured the ratio of MS2 and that survived over a 24-h incubation period for each condition (0%-1,000% large-particle concentration in raw water) and completed a linear regression that included large- and small-particle coefficients. Particles were characterized by quantifying plankton, total bacterial cells, and total solids. and MS2 persistence was not significantly affected by large particles, but small particles had an effect in most waters. Small particles in higher-salinity waters had the largest, negative effect on and MS2 survival ratios: Significant small-particle coefficients ranged from -1.7 to -5.5 day in the marine waters and -0.89 to -3.2 day in the fresh and estuarine waters. This work will inform remediation efforts for impaired surface water bodies.IMPORTANCEMany surface water bodies in the United States have organisms associated with fecal contamination that exceed regulatory standards and prevent safe recreation. The process to remediate impaired water bodies is complicated because these fecal indicator organisms are affected by the local environmental conditions. For example, the effect of particles in surface water on fecal indicator concentrations are difficult to quantify in a way that is comparable between studies and water bodies. We applied a method that overcomes this limitation to assess the effects of large particles, including natural plankton that could consume the seeded fecal indicator organisms. Even in environmental water samples with diverse communities of plankton present, no effect of large particles on fecal indicator concentrations was observed. These findings have implications for the interpretation and design of future studies, including that particle characterization of surface water may be necessary to assess the fate of fecal indicators.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ISSN:2379-5042
2379-5042
DOI:10.1128/msphere.00656-24