Machine-Learning-Augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening

We present a machine-learning-augmented chemisorption model that enables fast and accurate prediction of the surface reactivity of metal alloys within a broad chemical space. Specifically, we show that artificial neural networks, a family of biologically inspired learning algorithms, trained with a...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 6; no. 18; pp. 3528 - 3533
Main Authors Ma, Xianfeng, Li, Zheng, Achenie, Luke E. K, Xin, Hongliang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a machine-learning-augmented chemisorption model that enables fast and accurate prediction of the surface reactivity of metal alloys within a broad chemical space. Specifically, we show that artificial neural networks, a family of biologically inspired learning algorithms, trained with a set of ab initio adsorption energies and electronic fingerprints of idealized bimetallic surfaces, can capture complex, nonlinear interactions of adsorbates (e.g., *CO) on multimetallics with ∼0.1 eV error, outperforming the two-level interaction model in prediction. By leveraging scaling relations between adsorption energies of similar adsorbates, we illustrate that this integrated approach greatly facilitates high-throughput catalyst screening and, as a specific case, suggests promising {100}-terminated multimetallic alloys with improved efficiency and selectivity for CO2 electrochemical reduction to C2 species. Statistical analysis of the network response to perturbations of input features underpins our fundamental understanding of chemical bonding on metal surfaces.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.5b01660