Efficient Monte Carlo Sampling for Molecular Systems Using Continuous Normalizing Flow

Monte Carlo molecular simulation is a powerful computational method for simulating molecular behavior. It generates samples of the possible states of molecular systems. To generate a sample efficiently, it is advantageous to avoid suggesting extremely high-energy states that would never become possi...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 18; no. 3; pp. 1395 - 1405
Main Authors Endo, Katsuhiro, Yuhara, Daisuke, Yasuoka, Kenji
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Monte Carlo molecular simulation is a powerful computational method for simulating molecular behavior. It generates samples of the possible states of molecular systems. To generate a sample efficiently, it is advantageous to avoid suggesting extremely high-energy states that would never become possible states. In this study, we propose a new sampling method for Monte Carlo molecular simulation, that is, a continuous normalizing molecular flow (CNMF) method, which can create various probabilistic distributions of molecular states from some initial distribution. The CNMF method generates samples by solving a first-order differential equation with two-body intermolecular interaction terms. We also develop specific probabilistic distributions using CNMF called inverse square flow, which yields distributions with zero probability density when molecule pairs are in close proximity, whereas probability densities are compressed uniformly from the initial distribution in all other cases. Using inverse square flow, we demonstrate that Monte Carlo molecular simulation is more efficient than the standard simulation. Although the increased computational costs of the CNMF method are non-negligible, this method is feasible for parallel computation and has the potential for expansion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.1c01047