How Unnatural Amino Acids in Antimicrobial Peptides Change Interactions with Lipid Model Membranes
This study investigates the potential of antimicrobial peptides (AMPs) as alternatives to combat antibiotic resistance, with a focus on two AMPs containing unnatural amino acids (UAAs), E2-53R (16 AAs) and LE-54R (14 AAs). In both peptides, valine is replaced by norvaline (Nva), and tryptophan is re...
Saved in:
Published in | The journal of physical chemistry. B Vol. 128; no. 40; pp. 9772 - 9784 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study investigates the potential of antimicrobial peptides (AMPs) as alternatives to combat antibiotic resistance, with a focus on two AMPs containing unnatural amino acids (UAAs), E2-53R (16 AAs) and LE-54R (14 AAs). In both peptides, valine is replaced by norvaline (Nva), and tryptophan is replaced by 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). Microbiological studies reveal their potent activity against both Gram-negative (G(−)) and Gram-positive (G(+)) bacteria without any toxicity to eukaryotic cells at test concentrations up to 32 μM. Circular dichroism (CD) spectroscopy indicates that these peptides maintain α-helical structures when interacting with G(−) and G(+) lipid model membranes (LMMs), a feature linked to their efficacy. X-ray diffuse scattering (XDS) demonstrates a softening of G(−), G(+) and eukaryotic (Euk33) LMMs and a nonmonotonic decrease in chain order as a potential determinant for bacterial membrane destabilization. Additionally, XDS finds a significant link between both peptides’ interfacial location in G(−) and G(+) LMMs and their efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Lack of toxicity in eukaryotic cells may be related to their loss of α-helicity and their hydrocarbon location in Euk33 LMMs. Both AMPs with UAAs offer a novel strategy to wipe out antibiotic-resistant strains while maintaining human cells. These findings are compared with previously published data on E2-35, which consists of the natural amino acids arginine, tryptophan, and valine. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-6106 1520-5207 1520-5207 |
DOI: | 10.1021/acs.jpcb.4c04152 |