Direct Quantification of Loop Interaction and π–π Stacking for G‑Quadruplex Stability at the Submolecular Level
The well-demonstrated biological functions of DNA G-quadruplex inside cells call for small molecules that can modulate these activities by interacting with G-quadruplexes. However, the paucity of the understanding of the G-quadruplex stability contributed from submolecular elements, such as loops an...
Saved in:
Published in | Journal of the American Chemical Society Vol. 136; no. 44; pp. 15537 - 15544 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
05.11.2014
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The well-demonstrated biological functions of DNA G-quadruplex inside cells call for small molecules that can modulate these activities by interacting with G-quadruplexes. However, the paucity of the understanding of the G-quadruplex stability contributed from submolecular elements, such as loops and tetraguanine (G) planes (or G-quartets), has hindered the development of small-molecule binders. Assisted by click chemistry, herein, we attached pulling handles via two modified guanines in each of the three G-quartets in human telomeric G-quadruplex. Mechanical unfolding using these handles revealed that the loop interaction contributed more to the G-quadruplex stability than the stacking of G-quartets. This result was further confirmed by the binding of stacking ligands, such as telomestatin derivatives, which led to similar mechanical stability for all three G-quartets by significant reduction of loop interactions for the top and bottom G-quartets. The direct comparison of loop interaction and G-quartet stacking in G-quadruplex provides unprecedented insights for the design of more efficient G-quadruplex-interacting molecules. Compared to traditional experiments, in which mutations are employed to elucidate the roles of specific residues in a biological molecule, our submolecular dissection offers a complementary approach to evaluate individual domains inside a molecule with fewer disturbances to the native structure. |
---|---|
Bibliography: | KAKEN ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja503585h |