Purified Chlorine Dioxide as an Alternative to Chlorine Disinfection to Minimize Chlorate Formation During Postharvest Produce Washing
The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO3 –) into produce, this study evaluated whether switching to chlor...
Saved in:
Published in | Environmental science & technology Vol. 57; no. 32; pp. 12063 - 12071 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO3 –) into produce, this study evaluated whether switching to chlorine dioxide (ClO2) could reduce chlorate concentrations within the produce. Because ClO2 exhibits lower disinfectant demand than chlorine, substantially lower concentrations can be applied. However, ClO3 – can form through several pathways, particularly by reactions between ClO2 and the chlorine used to generate ClO2 via reaction with chlorite (ClO2 –) or chlorine that forms when ClO2 reacts with produce. This study demonstrates that purging ClO2 from the chlorine and ClO2 – mixture used for its generation through a trap containing ClO2 – can scavenge chlorine, substantially reducing ClO3 – concentrations in ClO2 stock solutions. Addition of low concentrations of ammonia to the produce washwater further reduced ClO3 – formation by binding the chlorine produced by ClO2 reactions with produce as inactive chloramines without scavenging ClO2. While chlorate concentrations in lettuce, kale, and broccoli exceeded regulatory guidelines during treatment with chlorine, ClO3 – concentrations were below regulatory guidelines for each of these vegetables when treated with ClO2 together with these two purification measures. Switching to purified ClO2 also reduced the concentrations of lipid-bound oleic acid chlorohydrins and protein-bound chlorotyrosines, which are exemplars of halogenated byproducts formed from disinfectant reactions with biomolecules within produce. |
---|---|
AbstractList | The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO3 –) into produce, this study evaluated whether switching to chlorine dioxide (ClO2) could reduce chlorate concentrations within the produce. Because ClO2 exhibits lower disinfectant demand than chlorine, substantially lower concentrations can be applied. However, ClO3 – can form through several pathways, particularly by reactions between ClO2 and the chlorine used to generate ClO2 via reaction with chlorite (ClO2 –) or chlorine that forms when ClO2 reacts with produce. This study demonstrates that purging ClO2 from the chlorine and ClO2 – mixture used for its generation through a trap containing ClO2 – can scavenge chlorine, substantially reducing ClO3 – concentrations in ClO2 stock solutions. Addition of low concentrations of ammonia to the produce washwater further reduced ClO3 – formation by binding the chlorine produced by ClO2 reactions with produce as inactive chloramines without scavenging ClO2. While chlorate concentrations in lettuce, kale, and broccoli exceeded regulatory guidelines during treatment with chlorine, ClO3 – concentrations were below regulatory guidelines for each of these vegetables when treated with ClO2 together with these two purification measures. Switching to purified ClO2 also reduced the concentrations of lipid-bound oleic acid chlorohydrins and protein-bound chlorotyrosines, which are exemplars of halogenated byproducts formed from disinfectant reactions with biomolecules within produce. The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO ) into produce, this study evaluated whether switching to chlorine dioxide (ClO ) could reduce chlorate concentrations within the produce. Because ClO exhibits lower disinfectant demand than chlorine, substantially lower concentrations can be applied. However, ClO can form through several pathways, particularly by reactions between ClO and the chlorine used to generate ClO via reaction with chlorite (ClO ) or chlorine that forms when ClO reacts with produce. This study demonstrates that purging ClO from the chlorine and ClO mixture used for its generation through a trap containing ClO can scavenge chlorine, substantially reducing ClO concentrations in ClO stock solutions. Addition of low concentrations of ammonia to the produce washwater further reduced ClO formation by binding the chlorine produced by ClO reactions with produce as inactive chloramines without scavenging ClO . While chlorate concentrations in lettuce, kale, and broccoli exceeded regulatory guidelines during treatment with chlorine, ClO concentrations were below regulatory guidelines for each of these vegetables when treated with ClO together with these two purification measures. Switching to purified ClO also reduced the concentrations of lipid-bound oleic acid chlorohydrins and protein-bound chlorotyrosines, which are exemplars of halogenated byproducts formed from disinfectant reactions with biomolecules within produce. |
Author | Mitch, William A. Suh, Min-Jeong Simpson, Adam M.-A. |
AuthorAffiliation | Department of Civil and Environmental Engineering Department of Engineering, Fred DeMatteis School of Engineering and Applied Science |
AuthorAffiliation_xml | – name: Department of Civil and Environmental Engineering – name: Department of Engineering, Fred DeMatteis School of Engineering and Applied Science |
Author_xml | – sequence: 1 givenname: Min-Jeong surname: Suh fullname: Suh, Min-Jeong organization: Department of Engineering, Fred DeMatteis School of Engineering and Applied Science – sequence: 2 givenname: Adam M.-A. orcidid: 0000-0002-4850-4828 surname: Simpson fullname: Simpson, Adam M.-A. organization: Department of Civil and Environmental Engineering – sequence: 3 givenname: William A. orcidid: 0000-0002-4917-0938 surname: Mitch fullname: Mitch, William A. email: wamitch@stanford.edu organization: Department of Civil and Environmental Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37531609$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLxDAUhYMoOo6u3UnAjSAdk6Zp0qXM-ALFWSi6K5n21om0iSatqD_A323qjIMILkIW9zvnPs42WjfWAEJ7lIwoiemxKvwIfDtiBSGEp2toQHlMIi45XUcDQiiLMpY-bKFt758CEjMiN9EWE5zRlGQD9DntnK40lHg8r63TBvBE2zddAlYeK4NP6hacUa1-Bdza35TXpoKi1db0hWttdKM_YEGoFvCZdY36Lk9CD_OIp9a3c-Vew8B46mzZFYDvlZ-H2g7aqFTtYXf5D9Hd2ent-CK6ujm_HJ9cRYpR3kYCRFGFrapZTAuZSFWmWVhYcFHNBKdJLDOqSkhnjAoAEROQpRSMJ0xxmpaSDdHhwvfZ2ZcuDJI32hdQ18qA7Xwey4SnPKGJCOjBH_TJduESdU_xNLwkyQJ1vKAKZ713UOXPTjfKveeU5H1EeYgo79XLiIJif-nbzRooV_xPJgE4WgC9ctXzP7svEgue1A |
Cites_doi | 10.1016/j.jbiosc.2011.01.010 10.1139/s06-052 10.1016/0043-1354(84)90001-0 10.1021/ic00043a011 10.1016/j.jes.2017.04.021 10.1016/j.ifset.2018.05.002 10.1021/ic020440m 10.1002/j.1551-8833.1984.tb05264.x 10.1021/es204717j 10.1016/j.postharvbio.2009.08.001 10.1021/acs.est.6b03539 10.1016/j.watres.2022.118399 10.1006/abio.1993.1270 10.1016/j.postharvbio.2011.03.006 10.1021/ic50060a013 10.1021/acs.est.8b01099 10.1021/ja01326a002 10.1016/j.watres.2007.01.032 10.1002/j.1551-8833.1986.tb05766.x 10.1016/j.postharvbio.2019.01.014 10.1016/j.foodcont.2021.108578 10.1021/acs.est.8b03005 10.1002/j.1551-8833.1993.tb06065.x 10.1021/acs.est.1c04994 10.5194/acp-15-4399-2015 10.1016/j.foodcont.2014.01.034 10.1021/acs.est.8b04415 10.1016/j.foodres.2016.10.048 10.1021/acs.est.1c04362 10.1016/j.watres.2017.08.038 10.1080/10643389.2020.1862562 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society Copyright American Chemical Society Aug 15, 2023 |
Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society Aug 15, 2023 |
DBID | NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
DOI | 10.1021/acs.est.3c00056 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 12071 |
ExternalDocumentID | 10_1021_acs_est_3c00056 37531609 b337235167 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 55A 5GY 5VS 63O 6TJ 7~N 85S AABXI ABFRP ABMVS ABOGM ABPPZ ABPTK ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGHSJ AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YZZ ZCA 53G AAHBH ABJNI ADUKH CUPRZ NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
ID | FETCH-LOGICAL-a315t-7e7cf001fb21c848ad69152757fb75142891ade6b317ee720e8d873543a516d83 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri Aug 16 05:09:23 EDT 2024 Thu Oct 10 17:10:53 EDT 2024 Fri Aug 23 01:07:53 EDT 2024 Wed Oct 16 00:38:48 EDT 2024 Thu Aug 17 09:43:41 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | chlorine dioxide chlorate disinfection byproducts food chlorine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a315t-7e7cf001fb21c848ad69152757fb75142891ade6b317ee720e8d873543a516d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4850-4828 0000-0002-4917-0938 |
PMID | 37531609 |
PQID | 2856285449 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2845654147 proquest_journals_2856285449 crossref_primary_10_1021_acs_est_3c00056 pubmed_primary_37531609 acs_journals_10_1021_acs_est_3c00056 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-15 |
PublicationDateYYYYMMDD | 2023-08-15 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref18/cit18 American Public Health Association (ref27/cit27) 1998 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 The European Commission (ref11/cit11) 2022; 178 ref15/cit15 ref22/cit22 Pfaff J. D. (ref31/cit31) 1993 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 Snoeyink V. L. (ref28/cit28) 1980 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1016/j.jbiosc.2011.01.010 – ident: ref26/cit26 doi: 10.1139/s06-052 – ident: ref20/cit20 doi: 10.1016/0043-1354(84)90001-0 – volume-title: Method 300.0: Determination of Inorganic Anions by Ion Chromatography. Environmental Monitoring Systems Laboratory year: 1993 ident: ref31/cit31 contributor: fullname: Pfaff J. D. – ident: ref12/cit12 doi: 10.1021/ic00043a011 – ident: ref37/cit37 doi: 10.1016/j.jes.2017.04.021 – ident: ref3/cit3 doi: 10.1016/j.ifset.2018.05.002 – ident: ref22/cit22 doi: 10.1021/ic020440m – ident: ref15/cit15 doi: 10.1002/j.1551-8833.1984.tb05264.x – ident: ref36/cit36 doi: 10.1021/es204717j – ident: ref34/cit34 doi: 10.1016/j.postharvbio.2009.08.001 – ident: ref35/cit35 doi: 10.1021/acs.est.6b03539 – ident: ref1/cit1 – ident: ref25/cit25 doi: 10.1016/j.watres.2022.118399 – ident: ref32/cit32 doi: 10.1006/abio.1993.1270 – ident: ref19/cit19 doi: 10.1016/j.postharvbio.2011.03.006 – ident: ref30/cit30 doi: 10.1021/ic50060a013 – ident: ref24/cit24 doi: 10.1021/acs.est.8b01099 – ident: ref13/cit13 doi: 10.1021/ja01326a002 – ident: ref21/cit21 doi: 10.1016/j.watres.2007.01.032 – ident: ref14/cit14 doi: 10.1002/j.1551-8833.1986.tb05766.x – ident: ref9/cit9 doi: 10.1016/j.postharvbio.2019.01.014 – volume-title: Water Chemistry year: 1980 ident: ref28/cit28 contributor: fullname: Snoeyink V. L. – ident: ref8/cit8 doi: 10.1016/j.foodcont.2021.108578 – ident: ref5/cit5 doi: 10.1021/acs.est.8b03005 – ident: ref33/cit33 doi: 10.1002/j.1551-8833.1993.tb06065.x – ident: ref10/cit10 doi: 10.1021/acs.est.1c04994 – ident: ref29/cit29 doi: 10.5194/acp-15-4399-2015 – ident: ref16/cit16 – ident: ref4/cit4 doi: 10.1016/j.foodcont.2014.01.034 – volume-title: Standard Methods for the Examination of Water and Wastewater year: 1998 ident: ref27/cit27 contributor: fullname: American Public Health Association – ident: ref23/cit23 doi: 10.1021/acs.est.8b04415 – ident: ref7/cit7 doi: 10.1016/j.foodres.2016.10.048 – volume: 178 start-page: 7 year: 2022 ident: ref11/cit11 publication-title: Off. J. Eur. Communities: Legis. contributor: fullname: The European Commission – ident: ref6/cit6 doi: 10.1021/acs.est.1c04362 – ident: ref17/cit17 doi: 10.1016/j.watres.2017.08.038 – ident: ref2/cit2 doi: 10.1080/10643389.2020.1862562 – ident: ref38/cit38 |
SSID | ssj0002308 |
Score | 2.486992 |
Snippet | The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 12063 |
SubjectTerms | Ammonia Antiseptics Biomolecules Brassica Broccoli Chlorate Chlorine Chlorine dioxide Contamination Disinfectants Disinfection Disinfection & disinfectants Guidelines Lipids Low concentrations Oleic acid Physico-Chemical Treatment and Resource Recovery Scavenging Switching Washing |
Title | Purified Chlorine Dioxide as an Alternative to Chlorine Disinfection to Minimize Chlorate Formation During Postharvest Produce Washing |
URI | http://dx.doi.org/10.1021/acs.est.3c00056 https://www.ncbi.nlm.nih.gov/pubmed/37531609 https://www.proquest.com/docview/2856285449 https://search.proquest.com/docview/2845654147 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6CcRmHAWNjhYE8aQcuKXFix_ax6lZNSEWV2KTeIsd-0SIgnZp0QvsD-Lux86MtTBVc4yfHsp_tz_Z73wdwLlRkjKUYWCt04PAtDbR0B1fFbca01ia0PlF4-iW5umGf53y-IYv--wU_op-0qYZugRzGxuOL5Ck8i0SovErDaPx1veg6JC17sQIVJ_M1i8-jCvw2ZKo_t6Ed2LLZYyYv2uisqqEm9KEl34arOhuah8fEjf9u_ks46JAmGbWu8QqeYHkIz7f4Bw_h-HKT5uZMu3levYZfs9WyyB06JePbJkQPyUWx-FlYJLoiuiSj791F4j2SerFtVfXhXaUvmBZl8aN4wNbC4Voy6bMlyUWTIUm8XPCtXnq6DzJr-GeRdBJPR3AzubweXwWdYkOgY8rrQKAwuRuDPIuokUxqmyivm8tFngnuyd0U1RaTzKEWRBGFKK0UMWex5jSxMj6GvXJR4gkQlfDcKC6MO5Ixo0NtJXPgkqJCS3MZDeDcdW3azbgqbR7TI5r6j67BadffA_jYj3N61_J37DY97f1gU20keZNkytQAztbFbgr6dxVd4mLlbTwsZpSJAbxp_Wf9r9gdB2kSqrf_19x3sO_17P2lNeWnsFcvV_jeoZ46-9D4-29L3f4b |
link.rule.ids | 315,783,787,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N8QA88GMwKAww0h54SRcndmw_Vt2qAus0xCb1LXJsR4tg6dSkCO0P4O_mnCbpAE2CV_vkXGyf_dnn-w5gX6jIGEtdYK3QAeJbGmiJB1fFbca01ia0PlB4dpJMz9nHOZ9vQdjFwqASFbZUNU78DbsAPfBluE4OY-NhRnIH7nIRCp-zYDT-0q-9CKhll7NAxcm8J_P5qwG_G5nq993oFojZbDWTR_C5V7J5YfJ1uKqzobn-g7_xf_7iMTxscScZrSfKE9hy5Q48uMFGuAO7R5ugNxRtrb56Cj9PV8siR6xKxhfNgz1HDovFj8I6oiuiSzL61l4rfnekXtyUqrrHXqWvmBVlcVlcu7UEolwy6WInyWETL0l88uALvfTkH-S0YaN1pE349AzOJ0dn42nQ5m8IdEx5HQgnTI5DkWcRNZJJbRPls-hykWeCe6o3RbV1SYYYxjkRhU5aKWLOYs1pYmW8C9vlonQvgKiE50ZxYfCAxowOtZUMoSZ1ylmay2gA-9i1aWt_Vdq41iOa-kJUOG37ewDvu-FOr9ZsHreL7nXTYdNsJHkTcsrUAN711WiQ3suiS7dYeRkPkhllYgDP19Oo_1aMh0OahOrlv6n7Fu5Nz2bH6fGHk0-v4L7PdO-vsynfg-16uXKvEQ_V2ZvGBH4BHJMGkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BkBB74GOwURhgpD3wklIncWw_Vu2q8bGpElTqW-TYjhYB6dSkCO0P4O_G5zrZAE2CV_vkXGyf_bPP9zuAIy5jrQ21kTFcRQ7f0kgJd3CVzBSpUkqPDAYKn55lJ4v0_ZItQ1AYxsI4JRrXUuOd-GjVF6YMDAP0LZa7tXKYaIQa2W24wziNMW_BePKpX38dqBZd3gKZZMue0OevBnBH0s3vO9INMNNvN7MHsOgV9a9Mvgw3bTHUl39wOP7vnzyE-wF_kvF2wjyCW7beg91rrIR7sH98FfzmRIP1N4_h53yzrkqHWcnk3D_cs2RarX5UxhLVEFWT8ddwvfjdknZ1XarpHn3VWHFa1dW36tJuJRzaJbMuhpJMfdwkwSTC52qNJCBk7llpLQmJn57AYnb8eXIShTwOkUooayNuuS7dcJRFTLVIhTKZxGy6jJcFZ0j5JqkyNisclrGWxyMrjOAJSxPFaGZEsg879aq2T4HIjJVaMq7dQS3VaqSMSB3kpFZaQ0sRD-DIdW0e7LDJvYs9pjkWOoXz0N8DeNMNeX6xZfW4WfSwmxJXzcaC-dDTVA7gdV_tDBO9Laq2qw3KIFhOacoHcLCdSv23EndIpNlIPvs3dV_B3fl0ln98d_bhOdzDhPd4q03ZIey064194WBRW7z0VvALeUsJDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Purified+Chlorine+Dioxide+as+an+Alternative+to+Chlorine+Disinfection+to+Minimize+Chlorate+Formation+During+Postharvest+Produce+Washing&rft.jtitle=Environmental+science+%26+technology&rft.au=Suh%2C+Min-Jeong&rft.au=Simpson%2C+Adam+M.-A.&rft.au=Mitch%2C+William+A.&rft.date=2023-08-15&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=57&rft.issue=32&rft.spage=12063&rft.epage=12071&rft_id=info:doi/10.1021%2Facs.est.3c00056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_3c00056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |