First Principles Studies of Fe-Containing Aluminosilicate and Aluminogermanate Nanotubes

A theoretical study of the electronic effects of the inclusion of iron on aluminosilicates and aluminogermanates nanotubes with imogolite-like structure was carried out by unrestricted all-electron density functional theory calculations of periodic boundary models. The iron ion was incorporated to t...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 5; no. 12; pp. 3224 - 3231
Main Author Alvarez-Ramírez, Fernando
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A theoretical study of the electronic effects of the inclusion of iron on aluminosilicates and aluminogermanates nanotubes with imogolite-like structure was carried out by unrestricted all-electron density functional theory calculations of periodic boundary models. The iron ion was incorporated to the imogolitic models by an isomorphic substitution of Al by Fe and by the adsorption of the Fe ion in the inner and outer nanotube structure in the octahedral hydrated configuration. Additionally, the effects of the Fe concentration in the interval 0.05 ≤ x ≤ 0.1 were analyzed. We observe a drastic reduction of the bandgap value from 4.6 to 2.6 eV and from 4.2 to 1.0 eV for the silicon and germanium respectively. Finally, in all the models there is a shift of the Fermi energy toward the gap region as a result of the inclusion of iron electronic states in the bandgap region.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9618
1549-9626
DOI:10.1021/ct9004992