Surface-Modified Silicon Nanoparticles with Ultrabright Photoluminescence and Single-Exponential Decay for Nanoscale Fluorescence Lifetime Imaging of Temperature
In this Communication, we report fabrication of ultrabright water-dispersible silicon nanoparticles (SiNPs) with quantum yields (QYs) up to 75% through a novelly designed chemical surface modification. A simple one-pot surface modification was developed that improves the photoluminescent QYs of SiNP...
Saved in:
Published in | Journal of the American Chemical Society Vol. 135; no. 40; pp. 14924 - 14927 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this Communication, we report fabrication of ultrabright water-dispersible silicon nanoparticles (SiNPs) with quantum yields (QYs) up to 75% through a novelly designed chemical surface modification. A simple one-pot surface modification was developed that improves the photoluminescent QYs of SiNPs from 8% to 75% and meanwhile makes SiNPs water-dispersible. Time-correlated single photon counting and femtosecond time-resolved photoluminescence techniques demonstrate the emergence of a single and uncommonly highly emissive recombination channel across the entire NP ensemble induced by surface modification. The extended relatively long fluorescence lifetime (FLT), with a monoexponential decay, makes such surface-modified SiNPs suitable for applications involving lifetime measurements. Experimental results demonstrate that the surface-modified SiNPs can be utilized as an extraordinary nanothermometer through FLT imaging. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja407508v |