In Vitro Monitoring of Dissolution of an Immediate Release Tablet by Focused Beam Reflectance Measurement
Changes in in vitro drug release profiles of oral dosage forms are commonly observed due to storage of drug product at elevated temperature and humidity. An example is presented of an immediate release drug product which underwent changes to both release profile and crystal form on storage at elevat...
Saved in:
Published in | Molecular pharmaceutics Vol. 7; no. 5; pp. 1508 - 1515 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.10.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Changes in in vitro drug release profiles of oral dosage forms are commonly observed due to storage of drug product at elevated temperature and humidity. An example is presented of an immediate release drug product which underwent changes to both release profile and crystal form on storage at elevated humidity. The dissolution rate for unstressed tablets was comparable regardless of the crystal form present. Decreased release rate was only observed for stressed tablets that exhibited crystal form conversion. The cause of the dissolution change was determined by evaluating tablets manufactured with three drug substance crystal forms by fiber optic ultraviolet detection and focused beam reflectance measurement (FBRM). Tablets were also analyzed by near-infrared spectroscopy for crystal form determination. The observed change in dissolution rate correlated with detection of a greater number of larger particles by FBRM. FBRM results indicate increased aggregation of the tablet material due to crystal form conversion, resulting in the presence of slowly disintegrating and dissolving granules during the dissolution process. The improved understanding of the dissolution process allows evaluation of the potential in vivo impact of the stability changes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1543-8384 1543-8392 1543-8392 |
DOI: | 10.1021/mp1001476 |