Data-Driven Insights into the Transition-Metal-Catalyzed Asymmetric Hydrogenation of Olefins

The transition-metal-catalyzed asymmetric hydrogenation of olefins is one of the key transformations with great utility in various industrial applications. The field has been dominated by the use of noble metal catalysts, such as iridium and rhodium. The reactions with the earth-abundant cobalt meta...

Full description

Saved in:
Bibliographic Details
Published inJournal of organic chemistry Vol. 89; no. 17; pp. 12467 - 12478
Main Authors Singh, Sukriti, Hernández-Lobato, José Miguel
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.09.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:The transition-metal-catalyzed asymmetric hydrogenation of olefins is one of the key transformations with great utility in various industrial applications. The field has been dominated by the use of noble metal catalysts, such as iridium and rhodium. The reactions with the earth-abundant cobalt metal have increased only in recent years. In this work, we analyze the large amount of literature data available on iridium- and rhodium-catalyzed asymmetric hydrogenation. The limited data on reactions using Co catalysts are then examined in the context of Ir and Rh to obtain a better understanding of the reactivity pattern. A detailed data-driven study of the types of olefins, ligands, and reaction conditions such as solvent, temperature, and pressure is carried out. Our analysis provides an understanding of the literature trends and demonstrates that only a few olefin–ligand combinations or reaction conditions are frequently used. The knowledge of this bias in the literature data toward a certain group of substrates or reaction conditions can be useful for practitioners to design new reaction data sets that are suitable to obtain meaningful predictions from machine-learning models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3263
1520-6904
1520-6904
DOI:10.1021/acs.joc.4c01396