Focal Contact Formation of Vascular Smooth Muscle Cells on Langmuir–Blodgett and Solvent-Cast Films of Biodegradable Poly(ester amide)s
The ability of biomaterials to support the adhesion of cells is a necessary condition for their use in scaffold-guided tissue engineering. Waveguide evanescent field fluorescence (WEFF) microscopy is a relatively new microscopic technique that allows the number of cell adhesions to a waveguide surfa...
Saved in:
Published in | ACS applied materials & interfaces Vol. 4; no. 3; pp. 1303 - 1312 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The ability of biomaterials to support the adhesion of cells is a necessary condition for their use in scaffold-guided tissue engineering. Waveguide evanescent field fluorescence (WEFF) microscopy is a relatively new microscopic technique that allows the number of cell adhesions to a waveguide surface be measured by imaging the interfacial contact region between the cells and their substratum. In this work, the adhesion of human coronary artery smooth muscle cells (HCASMCs) to ultrathin films (20 nm) of poly(ester amide)s (PEAs) prepared by Langmuir–Blodgett (LB) technology on waveguides was investigated and compared with conventional vinculin immunostaining on solvent cast PEA films. Cell culture was conducted both in the presence and absence of serum to evaluate the effect of nonspecific protein adsorption that mediates cell adhesion. WEFF microscopy analyses revealed that the cationic PEA enhanced the number of attachment sites compared with the control waveguides regardless of the culture medium. Although differences in cell adhesions between different PEAs were suggested by the results, no statistically significant differences were found. Similar results were observed with presently and previously reported vinculin immunostaining studies, further validating the use of WEFF microscopy to quantify cell adhesions. Moreover, the focal adhesions of the HCASMCs to the PEA surfaces indicate these PEAs can promote integrin signaling, which is vital in cell survival, migration, and proliferation, and ultimately in scaffold-guided vascular tissue engineering. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am201582q |