Shielding Constants and Chemical Shifts in DFT: Influence of Optimized Effective Potential and Coulomb-Attenuation
The influence of the optimized effective potential (OEP) and Coulomb-attenuation on shielding constants and chemical shifts is investigated for three disparate categories of molecule: main group, hydrogen bonded, and transition metal systems. Expanding the OEP in the orbital basis leads to physicall...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 114; no. 26; pp. 7179 - 7186 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.07.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The influence of the optimized effective potential (OEP) and Coulomb-attenuation on shielding constants and chemical shifts is investigated for three disparate categories of molecule: main group, hydrogen bonded, and transition metal systems. Expanding the OEP in the orbital basis leads to physically sensible exchange-correlation potentials; OEP generalized gradient approximation results provide some indication of the accuracy of the expansion. OEP uncoupled magnetic parameters from representative hybrid and Coulomb-attenuated functionals can be a dramatic improvement over conventional results; both categories yield similar accuracy. Additional flexibility is introduced by expanding the OEP in an extensive even-tempered basis set, but this leads to the well-known problem of unphysical, oscillatory potentials. Smooth potentials are recovered through the use of a smoothing norm, but deficiencies in the procedure are highlighted for transition metal complexes. The study reiterates the importance of the OEP procedure in magnetic response calculations using orbital-dependent functionals, together with the need for careful attention to ensure physically sensible potentials. It also illustrates the utility of Coulomb-attenuated functionals for computing short-range molecular properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp102465x |