Cross-layer racetrack memory design for ultra high density and low power consumption
The racetrack memory technology utilizes magnetic domains along a nanoscopic wire to obtain ultra-high data storage density. The recent success in the planar racetrack nanowire promised its fabrication feasibility and future scalability, bringing more design challenges and opportunities. In this pap...
Saved in:
Published in | 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC) pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
New York, NY, USA
ACM
29.05.2013
IEEE |
Series | ACM Conferences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The racetrack memory technology utilizes magnetic domains along a nanoscopic wire to obtain ultra-high data storage density. The recent success in the planar racetrack nanowire promised its fabrication feasibility and future scalability, bringing more design challenges and opportunities. In this paper, we initialize the optimization of racetrack memory embracing design considerations across multiple layers, including cell design, array structure, architecture organization, and data management. Our evaluation shows that racetrack memory based cache can achieve 6.4x area reduction, 25% performance enhancement, and 62% energy saving, compared to STT-RAM cache design. The benefit over SRAM technology is even more significant. |
---|---|
ISBN: | 1450320716 9781450320719 |
ISSN: | 0738-100X |
DOI: | 10.1145/2463209.2488799 |