Oxidation of an Organic Adlayer: A Bird’s Eye View

The reaction of O2 with an adlayer of the oligopyridine 2-phenyl-4,6-bis(6-(pyridine-2-yl)-4-(pyridine-4-yl)-pyridine-2-yl)pyrimidine (2,4′-BTP), adsorbed on the (111) surfaces of silver and gold and on HOPG – which can be considered as a model system for inorganic|organic contacts – was investigate...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 134; no. 21; pp. 8817 - 8822
Main Authors Waldmann, Thomas, Künzel, Daniela, Hoster, Harry E, Groß, Axel, Behm, R. Jürgen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 30.05.2012
Online AccessGet full text

Cover

Loading…
More Information
Summary:The reaction of O2 with an adlayer of the oligopyridine 2-phenyl-4,6-bis(6-(pyridine-2-yl)-4-(pyridine-4-yl)-pyridine-2-yl)pyrimidine (2,4′-BTP), adsorbed on the (111) surfaces of silver and gold and on HOPG – which can be considered as a model system for inorganic|organic contacts – was investigated by fast scanning tunneling microscopy (video STM) and dispersion corrected density functional theory (DFT-D) calculations. Only on Ag(111), oxidation of the 2,4′-BTP adlayer was observed, which is related to the fact that under the experimental conditions O2 adsorbs dissociatively on this surface leading to reactive O adatoms, but not on Au(111) or HOPG . There is a distinct regiospecifity of the oxidation reaction caused by intermolecular interactions. In addition, the oxidation leads to a chiral ordering. The relevance of these findings for reactions involving organic monolayers is discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja302593v