Solution Dynamics and Stability of Lanthanide(III) (S)-2-(p-Nitrobenzyl)DOTA Complexes

Addition of a benzyl substituent to the macrocyclic ring of DOTA has a substantial impact on the conformational ring flipping motion of the macrocycle in the resulting LnDOTA complexes. The p-NO2-benzyl substituent in the Ln(p-NO2-Bn-DOTA)- complexes lies in an equatorial position and effectively “l...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 43; no. 9; pp. 2845 - 2851
Main Authors Woods, Mark, Kovacs, Zoltan, Kiraly, Robert, Brücher, Ernö, Zhang, Shanrong, Sherry, A. Dean
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.05.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Addition of a benzyl substituent to the macrocyclic ring of DOTA has a substantial impact on the conformational ring flipping motion of the macrocycle in the resulting LnDOTA complexes. The p-NO2-benzyl substituent in the Ln(p-NO2-Bn-DOTA)- complexes lies in an equatorial position and effectively “locks” the conformation of the ring into the δδδδ configuration. The presence of the p-NO2-benzyl group also increases the population of the square antiprismatic (SAP) coordination isomer for all Ln(p-NO2-Bn-DOTA)- complexes relative to that seen for the respective LnDOTA- complexes. Despite this increase in SAP isomer population, the rate of water exchange in these complexes remains comparatively fast. The kinetic and thermodynamic stabilities of the Ln(p-NO2-Bn-DOTA)- complexes are also slightly lower than the corresponding LnDOTA- complexes but appear to be sufficiently high for in vivo use.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-1669
1520-510X
DOI:10.1021/ic0353007