Growth and Grain Boundaries in 2D Materials
Grain boundaries (GBs) are a kind of lattice imperfection widely existing in two-dimensional materials, playing a critical role in materials’ properties and device performance. Related key issues in this area have drawn much attention and are still under intense investigation. These issues include t...
Saved in:
Published in | ACS nano Vol. 14; no. 8; pp. 9320 - 9346 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
25.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Grain boundaries (GBs) are a kind of lattice imperfection widely existing in two-dimensional materials, playing a critical role in materials’ properties and device performance. Related key issues in this area have drawn much attention and are still under intense investigation. These issues include the characterization of GBs at different length scales, the dynamic formation of GBs during the synthesis, the manipulation of the configuration and density of GBs for specific material functionality, and the understanding of structure–property relationships and device applications. This review will provide a general introduction of progress in this field. Several techniques for characterizing GBs, such as direct imaging by high-resolution transmission electron microscopy, visualization techniques of GBs by optical microscopy, plasmon propagation, or second harmonic generation, are presented. To understand the dynamic formation process of GBs during the growth, a general geometric approach and theoretical consideration are reviewed. Moreover, strategies controlling the density of GBs for GB-free materials or materials with tunable GB patterns are summarized, and the effects of GBs on materials’ properties are discussed. Finally, challenges and outlook are provided. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.0c03558 |