Self-Delivery Photo-Immune Stimulators for Photodynamic Sensitized Tumor Immunotherapy

Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-fre...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 12; pp. 17100 - 17113
Main Authors Zhao, Lin-Ping, Zheng, Rong-Rong, Huang, Jia-Qi, Chen, Xia-Yun, Deng, Fu-An, Liu, Yi-Bin, Huang, Chu-Yu, Yu, Xi-Yong, Cheng, Hong, Li, Shi-Ying
Format Journal Article
LanguageEnglish
Published American Chemical Society 22.12.2020
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.0c06765

Cover

Loading…
Abstract Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy.
AbstractList Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy.Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy.
Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy.
Author Li, Shi-Ying
Huang, Chu-Yu
Cheng, Hong
Liu, Yi-Bin
Chen, Xia-Yun
Zheng, Rong-Rong
Zhao, Lin-Ping
Deng, Fu-An
Yu, Xi-Yong
Huang, Jia-Qi
AuthorAffiliation Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering
AuthorAffiliation_xml – name: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
– name: Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering
Author_xml – sequence: 1
  givenname: Lin-Ping
  surname: Zhao
  fullname: Zhao, Lin-Ping
  organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
– sequence: 2
  givenname: Rong-Rong
  surname: Zheng
  fullname: Zheng, Rong-Rong
  organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
– sequence: 3
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
  organization: Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering
– sequence: 4
  givenname: Xia-Yun
  surname: Chen
  fullname: Chen, Xia-Yun
  organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
– sequence: 5
  givenname: Fu-An
  surname: Deng
  fullname: Deng, Fu-An
  organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
– sequence: 6
  givenname: Yi-Bin
  surname: Liu
  fullname: Liu, Yi-Bin
  organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
– sequence: 7
  givenname: Chu-Yu
  surname: Huang
  fullname: Huang, Chu-Yu
  organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
– sequence: 8
  givenname: Xi-Yong
  surname: Yu
  fullname: Yu, Xi-Yong
  email: yuxycn@aliyun.com
  organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
– sequence: 9
  givenname: Hong
  orcidid: 0000-0002-3560-4432
  surname: Cheng
  fullname: Cheng, Hong
  email: chengh@smu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering
– sequence: 10
  givenname: Shi-Ying
  orcidid: 0000-0003-0666-7634
  surname: Li
  fullname: Li, Shi-Ying
  email: lisy-sci@gzhmu.edu.cn
  organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital
BookMark eNp9kM9LwzAUx4MouE3PXnsUpFvStGl7lPlrMFDYFG8hS19YRpvMJBXqX2-1w4Ogp_ce3-_nHT5jdGysAYQuCJ4SnJCZkN4IY6dYYpaz7AiNSElZjAv2evyzZ-QUjb3fYZzlRc5G6GUFtYpvoNbv4LroaWuDjRdN0xqIVkE3bS2CdT5S1g1h1RnRaBmtwHgd9AdU0bpt-vQbsmELTuy7M3SiRO3h_DAn6Pnudj1_iJeP94v59TIWlOAQMyZIChuVF6nKGCNJfwmVEEoYqSqZl5CkSmV9I6E0F5kqEpAlxThlrCIbQifocvi7d_atBR94o72EuhYGbOt5krKUFHmJaV_Nhqp01nsHiksdRNDWBCd0zQnmXx75wSM_eOy52S9u73QjXPcPcTUQfcB3tnWmV_Bn-xOE_4m8
CitedBy_id crossref_primary_10_1002_advs_202408729
crossref_primary_10_1080_10717544_2021_1983082
crossref_primary_10_1002_agt2_610
crossref_primary_10_1021_acsnano_1c08978
crossref_primary_10_1016_j_actbio_2023_01_023
crossref_primary_10_1016_j_cclet_2022_107827
crossref_primary_10_1002_adtp_202200020
crossref_primary_10_1002_adhm_202402311
crossref_primary_10_1002_ange_202217055
crossref_primary_10_1002_adhm_202100198
crossref_primary_10_1021_acsnano_4c09027
crossref_primary_10_1016_j_ccr_2023_215540
crossref_primary_10_1038_s41467_024_52458_4
crossref_primary_10_1039_D1CC04604G
crossref_primary_10_1016_j_jconrel_2023_04_027
crossref_primary_10_1002_adfm_202315127
crossref_primary_10_1016_j_biomaterials_2024_122568
crossref_primary_10_1002_smll_202107809
crossref_primary_10_1016_j_jconrel_2023_11_058
crossref_primary_10_1016_j_jcis_2021_12_128
crossref_primary_10_1021_acsnano_3c06290
crossref_primary_10_1038_s41419_022_04912_8
crossref_primary_10_1039_D1BM01139A
crossref_primary_10_1016_j_cej_2022_138585
crossref_primary_10_1016_j_actbio_2022_03_027
crossref_primary_10_1016_j_jconrel_2023_11_052
crossref_primary_10_1002_smll_202310018
crossref_primary_10_3390_molecules28207065
crossref_primary_10_1002_adtp_202100130
crossref_primary_10_1021_acsnano_2c11964
crossref_primary_10_1016_j_cej_2022_134783
crossref_primary_10_1002_adhm_202202307
crossref_primary_10_1021_acs_langmuir_4c02736
crossref_primary_10_1007_s40820_022_00951_0
crossref_primary_10_1039_D1BM00726B
crossref_primary_10_1021_acsami_4c09925
crossref_primary_10_1016_j_ajps_2022_07_002
crossref_primary_10_1002_adma_202415078
crossref_primary_10_1039_D4NR04981K
crossref_primary_10_1021_acsnano_2c06026
crossref_primary_10_1002_adfm_202405051
crossref_primary_10_1021_acsabm_1c00938
crossref_primary_10_1002_adfm_202103394
crossref_primary_10_1021_acs_biomac_4c00141
crossref_primary_10_1039_D2BM01700H
crossref_primary_10_2139_ssrn_3919716
crossref_primary_10_1002_adfm_202104645
crossref_primary_10_1039_D3TB00221G
crossref_primary_10_1016_j_cej_2022_139729
crossref_primary_10_1016_j_pdpdt_2022_103122
crossref_primary_10_1039_D2TB01578A
crossref_primary_10_2147_IJN_S314506
crossref_primary_10_1021_acsami_3c17146
crossref_primary_10_1002_anbr_202300129
crossref_primary_10_1016_j_ccr_2023_215654
crossref_primary_10_1002_cac2_12255
crossref_primary_10_1016_j_pmatsci_2021_100919
crossref_primary_10_1016_j_ijbiomac_2024_133942
crossref_primary_10_1016_j_cej_2024_157580
crossref_primary_10_1016_j_jcis_2022_04_090
crossref_primary_10_1016_j_jconrel_2021_06_021
crossref_primary_10_1016_j_ijpharm_2023_122970
crossref_primary_10_1039_D1BM01876K
crossref_primary_10_1016_j_cej_2025_160379
crossref_primary_10_34133_bmr_0048
crossref_primary_10_1016_j_jmst_2022_04_015
crossref_primary_10_1021_acsanm_4c00579
crossref_primary_10_1002_smll_202206441
crossref_primary_10_3389_fonc_2021_738323
crossref_primary_10_1002_adhm_202201233
crossref_primary_10_1016_j_jconrel_2023_09_014
crossref_primary_10_1016_j_ijbiomac_2024_136090
crossref_primary_10_1021_acs_bioconjchem_0c00694
crossref_primary_10_1021_acsnano_1c09106
crossref_primary_10_1016_j_biomaterials_2022_121952
crossref_primary_10_1021_acsami_2c15495
crossref_primary_10_1002_adhm_202302342
crossref_primary_10_1016_j_bioadv_2022_213263
crossref_primary_10_1002_admi_202400343
crossref_primary_10_1016_j_jconrel_2024_03_035
crossref_primary_10_1002_advs_202404731
crossref_primary_10_1016_j_ccr_2024_216027
crossref_primary_10_1016_j_biomaterials_2021_121167
crossref_primary_10_1016_j_cej_2024_152033
crossref_primary_10_1039_D2BM00437B
crossref_primary_10_1016_j_cej_2024_152397
crossref_primary_10_3390_pharmaceutics16121527
crossref_primary_10_1021_jacsau_2c00591
crossref_primary_10_1002_smll_202305708
crossref_primary_10_1016_j_apsb_2023_10_006
crossref_primary_10_1016_j_biomaterials_2023_122257
crossref_primary_10_1002_advs_202309204
crossref_primary_10_1021_acscentsci_3c00702
crossref_primary_10_1039_D2BM01181F
crossref_primary_10_1016_j_cej_2024_151728
crossref_primary_10_1016_j_biomaterials_2025_123287
crossref_primary_10_1002_adhm_202202085
crossref_primary_10_1002_btm2_10417
crossref_primary_10_1002_adfm_202108883
crossref_primary_10_1002_adhm_202100770
crossref_primary_10_1016_j_ijpharm_2022_121775
crossref_primary_10_1021_acsami_2c03523
crossref_primary_10_1002_adhm_202102038
crossref_primary_10_1016_j_biomaterials_2023_122392
crossref_primary_10_1186_s12951_021_01011_2
crossref_primary_10_1016_j_biomaterials_2021_121135
crossref_primary_10_1016_j_jconrel_2024_01_045
crossref_primary_10_1016_j_cclet_2023_108539
crossref_primary_10_1016_j_biomaterials_2022_121576
crossref_primary_10_1016_j_carbon_2025_120099
crossref_primary_10_2139_ssrn_4103918
crossref_primary_10_1016_j_chempr_2021_10_006
crossref_primary_10_1002_smll_202303596
crossref_primary_10_1016_j_cej_2023_147465
crossref_primary_10_1002_agt2_443
crossref_primary_10_1002_anie_202217055
crossref_primary_10_1016_j_nantod_2024_102399
crossref_primary_10_1016_j_semcancer_2021_11_005
crossref_primary_10_2147_IJN_S413204
crossref_primary_10_1039_D2TB00048B
crossref_primary_10_1080_1061186X_2023_2216402
crossref_primary_10_1021_acsnano_1c09496
crossref_primary_10_1002_smll_202102470
crossref_primary_10_1016_j_biomaterials_2021_120970
crossref_primary_10_1002_mco2_756
crossref_primary_10_1186_s12951_022_01531_5
crossref_primary_10_1002_adhm_202300711
crossref_primary_10_1016_j_biomaterials_2021_120854
crossref_primary_10_1039_D4CS00679H
crossref_primary_10_1002_adfm_202111784
crossref_primary_10_1016_j_actbio_2021_11_017
crossref_primary_10_1016_j_apsb_2022_05_008
crossref_primary_10_1021_acsabm_2c00394
Cites_doi 10.1002/adma.201803001
10.1038/nrc2639
10.1002/advs.201900101
10.1021/acs.nanolett.9b02306
10.1038/s41578-019-0108-1
10.1002/adma.201902960
10.1038/s41423-020-0465-0
10.1039/C8CS00896E
10.1021/acsnano.7b09112
10.1038/s41571-020-0410-2
10.1021/jacs.9b12232
10.1038/nrc3380
10.1016/j.apmt.2019.04.017
10.1038/ncomms12499
10.1021/acsnano.0c03648
10.1016/j.cell.2017.01.017
10.1016/j.biomaterials.2018.12.007
10.1111/j.1600-065X.2008.00649.x
10.1073/pnas.1500712112
10.1016/j.biomaterials.2018.10.005
10.1016/j.ctrv.2014.12.013
10.1136/gutjnl-2014-307990
10.1021/ja505212y
10.1021/acs.nanolett.8b01071
10.1002/adma.201907210
10.1002/adfm.201802540
10.1021/acsnano.9b04315
10.1021/acsnano.8b04371
10.1126/science.aar4060
10.1016/j.cell.2018.09.006
10.1002/advs.201700891
10.1038/sj.cr.7290282
10.1038/s41467-019-11269-8
10.1021/acsnano.8b03788
10.1021/acs.nanolett.0c00047
10.1021/acs.nanolett.9b04012
10.1002/adma.201606036
10.1002/med.21530
10.1016/j.jconrel.2020.02.025
10.1126/scitranslmed.aat7807
10.1021/acs.nanolett.9b01807
10.1016/j.biomaterials.2016.10.016
10.1021/acsnano.5b02513
10.1002/adma.201605021
10.1002/adma.201900927
10.1021/nl503598u
10.1016/j.biomaterials.2019.119497
10.1002/anie.201804882
10.1016/j.immuni.2016.06.001
10.1007/s40820-020-00452-y
10.1039/C9NR03872H
10.1002/anie.201707707
10.1038/nri3902
10.1002/anie.201710407
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.0c06765
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 17113
ExternalDocumentID 10_1021_acsnano_0c06765
g98895552
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7X8
ID FETCH-LOGICAL-a310t-66a14ebf784f5661214eaf213161ddc79e24ff5ebf2337a5f82ec9300466d1b13
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 02:35:07 EDT 2025
Tue Jul 01 03:37:05 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Thu Dec 24 06:57:30 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords self-delivery
immunogenetic cell death
nanomedicine
tumor immunotherapy
photodynamic therapy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a310t-66a14ebf784f5661214eaf213161ddc79e24ff5ebf2337a5f82ec9300466d1b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3560-4432
0000-0003-0666-7634
PQID 2464187903
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2464187903
crossref_citationtrail_10_1021_acsnano_0c06765
crossref_primary_10_1021_acsnano_0c06765
acs_journals_10_1021_acsnano_0c06765
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201222
2020-12-22
PublicationDateYYYYMMDD 2020-12-22
PublicationDate_xml – month: 12
  year: 2020
  text: 20201222
  day: 22
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1002/adma.201803001
– ident: ref15/cit15
  doi: 10.1038/nrc2639
– ident: ref24/cit24
  doi: 10.1002/advs.201900101
– ident: ref39/cit39
  doi: 10.1021/acs.nanolett.9b02306
– ident: ref32/cit32
  doi: 10.1038/s41578-019-0108-1
– ident: ref40/cit40
  doi: 10.1002/adma.201902960
– ident: ref54/cit54
  doi: 10.1038/s41423-020-0465-0
– ident: ref34/cit34
  doi: 10.1039/C8CS00896E
– ident: ref36/cit36
  doi: 10.1021/acsnano.7b09112
– ident: ref41/cit41
  doi: 10.1038/s41571-020-0410-2
– ident: ref17/cit17
  doi: 10.1021/jacs.9b12232
– ident: ref53/cit53
  doi: 10.1038/nrc3380
– ident: ref31/cit31
  doi: 10.1016/j.apmt.2019.04.017
– ident: ref52/cit52
  doi: 10.1038/ncomms12499
– ident: ref48/cit48
  doi: 10.1021/acsnano.0c03648
– ident: ref12/cit12
  doi: 10.1016/j.cell.2017.01.017
– ident: ref42/cit42
  doi: 10.1016/j.biomaterials.2018.12.007
– ident: ref2/cit2
  doi: 10.1111/j.1600-065X.2008.00649.x
– ident: ref8/cit8
  doi: 10.1073/pnas.1500712112
– ident: ref30/cit30
  doi: 10.1016/j.biomaterials.2018.10.005
– ident: ref7/cit7
  doi: 10.1016/j.ctrv.2014.12.013
– ident: ref6/cit6
  doi: 10.1136/gutjnl-2014-307990
– ident: ref43/cit43
  doi: 10.1021/ja505212y
– ident: ref13/cit13
  doi: 10.1021/acs.nanolett.8b01071
– ident: ref38/cit38
  doi: 10.1002/adma.201907210
– ident: ref5/cit5
  doi: 10.1002/adfm.201802540
– ident: ref27/cit27
  doi: 10.1021/acsnano.9b04315
– ident: ref25/cit25
  doi: 10.1021/acsnano.8b04371
– ident: ref1/cit1
  doi: 10.1126/science.aar4060
– ident: ref11/cit11
  doi: 10.1016/j.cell.2018.09.006
– ident: ref19/cit19
  doi: 10.1002/advs.201700891
– ident: ref16/cit16
  doi: 10.1038/sj.cr.7290282
– ident: ref26/cit26
  doi: 10.1038/s41467-019-11269-8
– ident: ref20/cit20
  doi: 10.1021/acsnano.8b03788
– ident: ref45/cit45
  doi: 10.1021/acs.nanolett.0c00047
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.9b04012
– ident: ref35/cit35
  doi: 10.1002/adma.201606036
– ident: ref22/cit22
  doi: 10.1002/med.21530
– ident: ref46/cit46
  doi: 10.1016/j.jconrel.2020.02.025
– ident: ref3/cit3
  doi: 10.1126/scitranslmed.aat7807
– ident: ref18/cit18
  doi: 10.1021/acs.nanolett.9b01807
– ident: ref49/cit49
  doi: 10.1016/j.biomaterials.2016.10.016
– ident: ref51/cit51
  doi: 10.1021/acsnano.5b02513
– ident: ref47/cit47
  doi: 10.1002/adma.201605021
– ident: ref33/cit33
  doi: 10.1002/adma.201900927
– ident: ref44/cit44
  doi: 10.1021/nl503598u
– ident: ref29/cit29
  doi: 10.1016/j.biomaterials.2019.119497
– ident: ref9/cit9
  doi: 10.1002/anie.201804882
– ident: ref10/cit10
  doi: 10.1016/j.immuni.2016.06.001
– ident: ref28/cit28
  doi: 10.1007/s40820-020-00452-y
– ident: ref50/cit50
  doi: 10.1039/C9NR03872H
– ident: ref23/cit23
  doi: 10.1002/anie.201707707
– ident: ref4/cit4
  doi: 10.1038/nri3902
– ident: ref21/cit21
  doi: 10.1002/anie.201710407
SSID ssj0057876
Score 2.6429152
Snippet Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging....
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17100
Title Self-Delivery Photo-Immune Stimulators for Photodynamic Sensitized Tumor Immunotherapy
URI http://dx.doi.org/10.1021/acsnano.0c06765
https://www.proquest.com/docview/2464187903
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54XODAGzFeKhIHLhmL26btEfHQQAIhjaHdqiRNBGK0aO0O268nbrvxmCY4VomrKHHsL7L9mZDTiBuNZU7UUwxJtX2fSlARtcrBDFKuuSHWO98_8HbXu-v5vS-y6N8RfGDnQuWpSLNmS1nDyv1FsgzcgmxEQZedidFFveNVANk-kC2KmLL4zPwA3ZDKf7qhn1a4dC0361VSVl4yEmJGyVtzWMimGs_yNf696g2yVgNM56LSiE2yoNMtsvqNdnCbPHd039Ar3cecjJHz-JIVGb3FQhHtdIrXd-zolQ1yx-LZajCp2tY7Hcx2L17HOnGehu92tBSqa7hGO6R7c_102aZ1fwUqLKgrKOeCeVqaIPSMRXUM7JcwwFyLApNEBZEGzxjfzgDXDYRvQtAqQoouzhMmmbtLltIs1XvE4UkArdBYvCakl4AvkKVfMglCRn5LuA1yanckru9HHpehb2BxvU1xvU0N0pycSqxqjnJsldGfL3A2Ffio6DnmTz2ZHHNsrxDGRUSqs2Eeg8c9bLrecvf_t8wDsgL47GZAAQ7JUjEY6iOLTQp5XGrlJx0g37A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2InSBy4uMRO4jZHxKKyCtSCuEV2YgtESRBJD_D1zCRp2YQEx8SLRuOx_ayZeQOwE0prKM2J-TEnUu0gYFrEIUPj4JYo17wW5TtfXMr2jX96F9yNgDvIhUEhcpwpL534H-wCfA__pSrNGm6M56sMRmEcoYigIL79g87g7CXzk5UfGd_JCCaGZD4_JqDbKM6_3kZfD-PyhjmegeuhbGVgyWOjX-hG_PaNtvE_ws_CdA03nf3KPuZgxKTzMPWJhHABbjumZ9mh6VGExqtzdZ8VGTuhtBHjdIqHJ6rvlb3kDqLbqjGpitg7HYp9Lx7eTOJ0-0_YWg6qM7peF-Hm-Kh70GZ1tQWmEOIVTErFfaNts-VbxHhc4JeygnuICZMkboZG-NYG2EN4XlMFtiVMHBJhl5QJ19xbgrE0S80yODJpCrdlEb0p7SciUMTZr7kWSoeBq7wV2EGNRPVuyaPSES54VKspqtW0Ao3B4kRxzVhOhTN6vw_YHQ54rsg6fu-6PVjtCDcUeUlUarJ-Hglf-lSC3fVW_ybmFky0uxfn0fnJ5dkaTAp6kHPBhFiHseKlbzYQtRR6szTUd3Dw6BE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfTBb_HbCj74krmkbbY-DufwG2Gb7K0kbYLibMV2D9tf712bDacI-tjmg-RySX7h7n5HyGkgjMYwJ-pFDEm1fZ8qHgUUlIMZpFxzGxjvfP8grnreTd_v26AwjIWBQWTQU1YY8XFXv8fGMgywc_ifyCSt1iI4Y4U_TxbQaIeOfM2LzuT8RRUUpS0Z3soAKKaEPj86wBspymZvpNkDubhl2qukNx1f4VzyWh3mqhqNv1E3_ncCa2TFwk6nWerJOpnTyQZZ_kJGuEmeOnpgaEsP0FNj5Dw-p3lKrzF8RDud_OUN83ylH5kDKLcsjMtk9k4HfeDzl7GOne7wDUqLRjaya7RFeu3L7sUVtVkXqASol1MhJPO0MvWGZwDrMQ5f0nDmAjaM46geaO4Z40MN7rp16ZsG11GAxF1CxEwxd5tUkjTRO8QRcZ3XGgZQnFRezH2J3P2KKS5V4Neku0tOQSKh3TVZWBjEOQutmEIrpl1SnSxQGFnmckygMfi9wdm0wXtJ2vF71ZPJioewsdBaIhOdDrOQe8LDVOw1d-9vwzwmi4-tdnh3_XC7T5Y4vssZp5wfkEr-MdSHAF5ydVTo6if84uqU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Delivery+Photo-Immune+Stimulators+for+Photodynamic+Sensitized+Tumor+Immunotherapy&rft.jtitle=ACS+nano&rft.au=Zhao%2C+Lin-Ping&rft.au=Zheng%2C+Rong-Rong&rft.au=Huang%2C+Jia-Qi&rft.au=Chen%2C+Xia-Yun&rft.date=2020-12-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=14&rft.issue=12&rft.spage=17100&rft.epage=17113&rft_id=info:doi/10.1021%2Facsnano.0c06765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_0c06765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon