Self-Delivery Photo-Immune Stimulators for Photodynamic Sensitized Tumor Immunotherapy
Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-fre...
Saved in:
Published in | ACS nano Vol. 14; no. 12; pp. 17100 - 17113 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
22.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.0c06765 |
Cover
Loading…
Abstract | Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy. |
---|---|
AbstractList | Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy.Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy. Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy. |
Author | Li, Shi-Ying Huang, Chu-Yu Cheng, Hong Liu, Yi-Bin Chen, Xia-Yun Zheng, Rong-Rong Zhao, Lin-Ping Deng, Fu-An Yu, Xi-Yong Huang, Jia-Qi |
AuthorAffiliation | Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering |
AuthorAffiliation_xml | – name: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital – name: Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering |
Author_xml | – sequence: 1 givenname: Lin-Ping surname: Zhao fullname: Zhao, Lin-Ping organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital – sequence: 2 givenname: Rong-Rong surname: Zheng fullname: Zheng, Rong-Rong organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital – sequence: 3 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi organization: Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering – sequence: 4 givenname: Xia-Yun surname: Chen fullname: Chen, Xia-Yun organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital – sequence: 5 givenname: Fu-An surname: Deng fullname: Deng, Fu-An organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital – sequence: 6 givenname: Yi-Bin surname: Liu fullname: Liu, Yi-Bin organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital – sequence: 7 givenname: Chu-Yu surname: Huang fullname: Huang, Chu-Yu organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital – sequence: 8 givenname: Xi-Yong surname: Yu fullname: Yu, Xi-Yong email: yuxycn@aliyun.com organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital – sequence: 9 givenname: Hong orcidid: 0000-0002-3560-4432 surname: Cheng fullname: Cheng, Hong email: chengh@smu.edu.cn organization: Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering – sequence: 10 givenname: Shi-Ying orcidid: 0000-0003-0666-7634 surname: Li fullname: Li, Shi-Ying email: lisy-sci@gzhmu.edu.cn organization: Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital |
BookMark | eNp9kM9LwzAUx4MouE3PXnsUpFvStGl7lPlrMFDYFG8hS19YRpvMJBXqX2-1w4Ogp_ce3-_nHT5jdGysAYQuCJ4SnJCZkN4IY6dYYpaz7AiNSElZjAv2evyzZ-QUjb3fYZzlRc5G6GUFtYpvoNbv4LroaWuDjRdN0xqIVkE3bS2CdT5S1g1h1RnRaBmtwHgd9AdU0bpt-vQbsmELTuy7M3SiRO3h_DAn6Pnudj1_iJeP94v59TIWlOAQMyZIChuVF6nKGCNJfwmVEEoYqSqZl5CkSmV9I6E0F5kqEpAlxThlrCIbQifocvi7d_atBR94o72EuhYGbOt5krKUFHmJaV_Nhqp01nsHiksdRNDWBCd0zQnmXx75wSM_eOy52S9u73QjXPcPcTUQfcB3tnWmV_Bn-xOE_4m8 |
CitedBy_id | crossref_primary_10_1002_advs_202408729 crossref_primary_10_1080_10717544_2021_1983082 crossref_primary_10_1002_agt2_610 crossref_primary_10_1021_acsnano_1c08978 crossref_primary_10_1016_j_actbio_2023_01_023 crossref_primary_10_1016_j_cclet_2022_107827 crossref_primary_10_1002_adtp_202200020 crossref_primary_10_1002_adhm_202402311 crossref_primary_10_1002_ange_202217055 crossref_primary_10_1002_adhm_202100198 crossref_primary_10_1021_acsnano_4c09027 crossref_primary_10_1016_j_ccr_2023_215540 crossref_primary_10_1038_s41467_024_52458_4 crossref_primary_10_1039_D1CC04604G crossref_primary_10_1016_j_jconrel_2023_04_027 crossref_primary_10_1002_adfm_202315127 crossref_primary_10_1016_j_biomaterials_2024_122568 crossref_primary_10_1002_smll_202107809 crossref_primary_10_1016_j_jconrel_2023_11_058 crossref_primary_10_1016_j_jcis_2021_12_128 crossref_primary_10_1021_acsnano_3c06290 crossref_primary_10_1038_s41419_022_04912_8 crossref_primary_10_1039_D1BM01139A crossref_primary_10_1016_j_cej_2022_138585 crossref_primary_10_1016_j_actbio_2022_03_027 crossref_primary_10_1016_j_jconrel_2023_11_052 crossref_primary_10_1002_smll_202310018 crossref_primary_10_3390_molecules28207065 crossref_primary_10_1002_adtp_202100130 crossref_primary_10_1021_acsnano_2c11964 crossref_primary_10_1016_j_cej_2022_134783 crossref_primary_10_1002_adhm_202202307 crossref_primary_10_1021_acs_langmuir_4c02736 crossref_primary_10_1007_s40820_022_00951_0 crossref_primary_10_1039_D1BM00726B crossref_primary_10_1021_acsami_4c09925 crossref_primary_10_1016_j_ajps_2022_07_002 crossref_primary_10_1002_adma_202415078 crossref_primary_10_1039_D4NR04981K crossref_primary_10_1021_acsnano_2c06026 crossref_primary_10_1002_adfm_202405051 crossref_primary_10_1021_acsabm_1c00938 crossref_primary_10_1002_adfm_202103394 crossref_primary_10_1021_acs_biomac_4c00141 crossref_primary_10_1039_D2BM01700H crossref_primary_10_2139_ssrn_3919716 crossref_primary_10_1002_adfm_202104645 crossref_primary_10_1039_D3TB00221G crossref_primary_10_1016_j_cej_2022_139729 crossref_primary_10_1016_j_pdpdt_2022_103122 crossref_primary_10_1039_D2TB01578A crossref_primary_10_2147_IJN_S314506 crossref_primary_10_1021_acsami_3c17146 crossref_primary_10_1002_anbr_202300129 crossref_primary_10_1016_j_ccr_2023_215654 crossref_primary_10_1002_cac2_12255 crossref_primary_10_1016_j_pmatsci_2021_100919 crossref_primary_10_1016_j_ijbiomac_2024_133942 crossref_primary_10_1016_j_cej_2024_157580 crossref_primary_10_1016_j_jcis_2022_04_090 crossref_primary_10_1016_j_jconrel_2021_06_021 crossref_primary_10_1016_j_ijpharm_2023_122970 crossref_primary_10_1039_D1BM01876K crossref_primary_10_1016_j_cej_2025_160379 crossref_primary_10_34133_bmr_0048 crossref_primary_10_1016_j_jmst_2022_04_015 crossref_primary_10_1021_acsanm_4c00579 crossref_primary_10_1002_smll_202206441 crossref_primary_10_3389_fonc_2021_738323 crossref_primary_10_1002_adhm_202201233 crossref_primary_10_1016_j_jconrel_2023_09_014 crossref_primary_10_1016_j_ijbiomac_2024_136090 crossref_primary_10_1021_acs_bioconjchem_0c00694 crossref_primary_10_1021_acsnano_1c09106 crossref_primary_10_1016_j_biomaterials_2022_121952 crossref_primary_10_1021_acsami_2c15495 crossref_primary_10_1002_adhm_202302342 crossref_primary_10_1016_j_bioadv_2022_213263 crossref_primary_10_1002_admi_202400343 crossref_primary_10_1016_j_jconrel_2024_03_035 crossref_primary_10_1002_advs_202404731 crossref_primary_10_1016_j_ccr_2024_216027 crossref_primary_10_1016_j_biomaterials_2021_121167 crossref_primary_10_1016_j_cej_2024_152033 crossref_primary_10_1039_D2BM00437B crossref_primary_10_1016_j_cej_2024_152397 crossref_primary_10_3390_pharmaceutics16121527 crossref_primary_10_1021_jacsau_2c00591 crossref_primary_10_1002_smll_202305708 crossref_primary_10_1016_j_apsb_2023_10_006 crossref_primary_10_1016_j_biomaterials_2023_122257 crossref_primary_10_1002_advs_202309204 crossref_primary_10_1021_acscentsci_3c00702 crossref_primary_10_1039_D2BM01181F crossref_primary_10_1016_j_cej_2024_151728 crossref_primary_10_1016_j_biomaterials_2025_123287 crossref_primary_10_1002_adhm_202202085 crossref_primary_10_1002_btm2_10417 crossref_primary_10_1002_adfm_202108883 crossref_primary_10_1002_adhm_202100770 crossref_primary_10_1016_j_ijpharm_2022_121775 crossref_primary_10_1021_acsami_2c03523 crossref_primary_10_1002_adhm_202102038 crossref_primary_10_1016_j_biomaterials_2023_122392 crossref_primary_10_1186_s12951_021_01011_2 crossref_primary_10_1016_j_biomaterials_2021_121135 crossref_primary_10_1016_j_jconrel_2024_01_045 crossref_primary_10_1016_j_cclet_2023_108539 crossref_primary_10_1016_j_biomaterials_2022_121576 crossref_primary_10_1016_j_carbon_2025_120099 crossref_primary_10_2139_ssrn_4103918 crossref_primary_10_1016_j_chempr_2021_10_006 crossref_primary_10_1002_smll_202303596 crossref_primary_10_1016_j_cej_2023_147465 crossref_primary_10_1002_agt2_443 crossref_primary_10_1002_anie_202217055 crossref_primary_10_1016_j_nantod_2024_102399 crossref_primary_10_1016_j_semcancer_2021_11_005 crossref_primary_10_2147_IJN_S413204 crossref_primary_10_1039_D2TB00048B crossref_primary_10_1080_1061186X_2023_2216402 crossref_primary_10_1021_acsnano_1c09496 crossref_primary_10_1002_smll_202102470 crossref_primary_10_1016_j_biomaterials_2021_120970 crossref_primary_10_1002_mco2_756 crossref_primary_10_1186_s12951_022_01531_5 crossref_primary_10_1002_adhm_202300711 crossref_primary_10_1016_j_biomaterials_2021_120854 crossref_primary_10_1039_D4CS00679H crossref_primary_10_1002_adfm_202111784 crossref_primary_10_1016_j_actbio_2021_11_017 crossref_primary_10_1016_j_apsb_2022_05_008 crossref_primary_10_1021_acsabm_2c00394 |
Cites_doi | 10.1002/adma.201803001 10.1038/nrc2639 10.1002/advs.201900101 10.1021/acs.nanolett.9b02306 10.1038/s41578-019-0108-1 10.1002/adma.201902960 10.1038/s41423-020-0465-0 10.1039/C8CS00896E 10.1021/acsnano.7b09112 10.1038/s41571-020-0410-2 10.1021/jacs.9b12232 10.1038/nrc3380 10.1016/j.apmt.2019.04.017 10.1038/ncomms12499 10.1021/acsnano.0c03648 10.1016/j.cell.2017.01.017 10.1016/j.biomaterials.2018.12.007 10.1111/j.1600-065X.2008.00649.x 10.1073/pnas.1500712112 10.1016/j.biomaterials.2018.10.005 10.1016/j.ctrv.2014.12.013 10.1136/gutjnl-2014-307990 10.1021/ja505212y 10.1021/acs.nanolett.8b01071 10.1002/adma.201907210 10.1002/adfm.201802540 10.1021/acsnano.9b04315 10.1021/acsnano.8b04371 10.1126/science.aar4060 10.1016/j.cell.2018.09.006 10.1002/advs.201700891 10.1038/sj.cr.7290282 10.1038/s41467-019-11269-8 10.1021/acsnano.8b03788 10.1021/acs.nanolett.0c00047 10.1021/acs.nanolett.9b04012 10.1002/adma.201606036 10.1002/med.21530 10.1016/j.jconrel.2020.02.025 10.1126/scitranslmed.aat7807 10.1021/acs.nanolett.9b01807 10.1016/j.biomaterials.2016.10.016 10.1021/acsnano.5b02513 10.1002/adma.201605021 10.1002/adma.201900927 10.1021/nl503598u 10.1016/j.biomaterials.2019.119497 10.1002/anie.201804882 10.1016/j.immuni.2016.06.001 10.1007/s40820-020-00452-y 10.1039/C9NR03872H 10.1002/anie.201707707 10.1038/nri3902 10.1002/anie.201710407 |
ContentType | Journal Article |
Copyright | 2020 American Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.0c06765 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 17113 |
ExternalDocumentID | 10_1021_acsnano_0c06765 g98895552 |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7X8 |
ID | FETCH-LOGICAL-a310t-66a14ebf784f5661214eaf213161ddc79e24ff5ebf2337a5f82ec9300466d1b13 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 02:35:07 EDT 2025 Tue Jul 01 03:37:05 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Thu Dec 24 06:57:30 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | self-delivery immunogenetic cell death nanomedicine tumor immunotherapy photodynamic therapy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a310t-66a14ebf784f5661214eaf213161ddc79e24ff5ebf2337a5f82ec9300466d1b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3560-4432 0000-0003-0666-7634 |
PQID | 2464187903 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2464187903 crossref_citationtrail_10_1021_acsnano_0c06765 crossref_primary_10_1021_acsnano_0c06765 acs_journals_10_1021_acsnano_0c06765 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201222 2020-12-22 |
PublicationDateYYYYMMDD | 2020-12-22 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201222 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1002/adma.201803001 – ident: ref15/cit15 doi: 10.1038/nrc2639 – ident: ref24/cit24 doi: 10.1002/advs.201900101 – ident: ref39/cit39 doi: 10.1021/acs.nanolett.9b02306 – ident: ref32/cit32 doi: 10.1038/s41578-019-0108-1 – ident: ref40/cit40 doi: 10.1002/adma.201902960 – ident: ref54/cit54 doi: 10.1038/s41423-020-0465-0 – ident: ref34/cit34 doi: 10.1039/C8CS00896E – ident: ref36/cit36 doi: 10.1021/acsnano.7b09112 – ident: ref41/cit41 doi: 10.1038/s41571-020-0410-2 – ident: ref17/cit17 doi: 10.1021/jacs.9b12232 – ident: ref53/cit53 doi: 10.1038/nrc3380 – ident: ref31/cit31 doi: 10.1016/j.apmt.2019.04.017 – ident: ref52/cit52 doi: 10.1038/ncomms12499 – ident: ref48/cit48 doi: 10.1021/acsnano.0c03648 – ident: ref12/cit12 doi: 10.1016/j.cell.2017.01.017 – ident: ref42/cit42 doi: 10.1016/j.biomaterials.2018.12.007 – ident: ref2/cit2 doi: 10.1111/j.1600-065X.2008.00649.x – ident: ref8/cit8 doi: 10.1073/pnas.1500712112 – ident: ref30/cit30 doi: 10.1016/j.biomaterials.2018.10.005 – ident: ref7/cit7 doi: 10.1016/j.ctrv.2014.12.013 – ident: ref6/cit6 doi: 10.1136/gutjnl-2014-307990 – ident: ref43/cit43 doi: 10.1021/ja505212y – ident: ref13/cit13 doi: 10.1021/acs.nanolett.8b01071 – ident: ref38/cit38 doi: 10.1002/adma.201907210 – ident: ref5/cit5 doi: 10.1002/adfm.201802540 – ident: ref27/cit27 doi: 10.1021/acsnano.9b04315 – ident: ref25/cit25 doi: 10.1021/acsnano.8b04371 – ident: ref1/cit1 doi: 10.1126/science.aar4060 – ident: ref11/cit11 doi: 10.1016/j.cell.2018.09.006 – ident: ref19/cit19 doi: 10.1002/advs.201700891 – ident: ref16/cit16 doi: 10.1038/sj.cr.7290282 – ident: ref26/cit26 doi: 10.1038/s41467-019-11269-8 – ident: ref20/cit20 doi: 10.1021/acsnano.8b03788 – ident: ref45/cit45 doi: 10.1021/acs.nanolett.0c00047 – ident: ref37/cit37 doi: 10.1021/acs.nanolett.9b04012 – ident: ref35/cit35 doi: 10.1002/adma.201606036 – ident: ref22/cit22 doi: 10.1002/med.21530 – ident: ref46/cit46 doi: 10.1016/j.jconrel.2020.02.025 – ident: ref3/cit3 doi: 10.1126/scitranslmed.aat7807 – ident: ref18/cit18 doi: 10.1021/acs.nanolett.9b01807 – ident: ref49/cit49 doi: 10.1016/j.biomaterials.2016.10.016 – ident: ref51/cit51 doi: 10.1021/acsnano.5b02513 – ident: ref47/cit47 doi: 10.1002/adma.201605021 – ident: ref33/cit33 doi: 10.1002/adma.201900927 – ident: ref44/cit44 doi: 10.1021/nl503598u – ident: ref29/cit29 doi: 10.1016/j.biomaterials.2019.119497 – ident: ref9/cit9 doi: 10.1002/anie.201804882 – ident: ref10/cit10 doi: 10.1016/j.immuni.2016.06.001 – ident: ref28/cit28 doi: 10.1007/s40820-020-00452-y – ident: ref50/cit50 doi: 10.1039/C9NR03872H – ident: ref23/cit23 doi: 10.1002/anie.201707707 – ident: ref4/cit4 doi: 10.1038/nri3902 – ident: ref21/cit21 doi: 10.1002/anie.201710407 |
SSID | ssj0057876 |
Score | 2.6429152 |
Snippet | Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging.... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17100 |
Title | Self-Delivery Photo-Immune Stimulators for Photodynamic Sensitized Tumor Immunotherapy |
URI | http://dx.doi.org/10.1021/acsnano.0c06765 https://www.proquest.com/docview/2464187903 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54XODAGzFeKhIHLhmL26btEfHQQAIhjaHdqiRNBGK0aO0O268nbrvxmCY4VomrKHHsL7L9mZDTiBuNZU7UUwxJtX2fSlARtcrBDFKuuSHWO98_8HbXu-v5vS-y6N8RfGDnQuWpSLNmS1nDyv1FsgzcgmxEQZedidFFveNVANk-kC2KmLL4zPwA3ZDKf7qhn1a4dC0361VSVl4yEmJGyVtzWMimGs_yNf696g2yVgNM56LSiE2yoNMtsvqNdnCbPHd039Ar3cecjJHz-JIVGb3FQhHtdIrXd-zolQ1yx-LZajCp2tY7Hcx2L17HOnGehu92tBSqa7hGO6R7c_102aZ1fwUqLKgrKOeCeVqaIPSMRXUM7JcwwFyLApNEBZEGzxjfzgDXDYRvQtAqQoouzhMmmbtLltIs1XvE4UkArdBYvCakl4AvkKVfMglCRn5LuA1yanckru9HHpehb2BxvU1xvU0N0pycSqxqjnJsldGfL3A2Ffio6DnmTz2ZHHNsrxDGRUSqs2Eeg8c9bLrecvf_t8wDsgL47GZAAQ7JUjEY6iOLTQp5XGrlJx0g37A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2InSBy4uMRO4jZHxKKyCtSCuEV2YgtESRBJD_D1zCRp2YQEx8SLRuOx_ayZeQOwE0prKM2J-TEnUu0gYFrEIUPj4JYo17wW5TtfXMr2jX96F9yNgDvIhUEhcpwpL534H-wCfA__pSrNGm6M56sMRmEcoYigIL79g87g7CXzk5UfGd_JCCaGZD4_JqDbKM6_3kZfD-PyhjmegeuhbGVgyWOjX-hG_PaNtvE_ws_CdA03nf3KPuZgxKTzMPWJhHABbjumZ9mh6VGExqtzdZ8VGTuhtBHjdIqHJ6rvlb3kDqLbqjGpitg7HYp9Lx7eTOJ0-0_YWg6qM7peF-Hm-Kh70GZ1tQWmEOIVTErFfaNts-VbxHhc4JeygnuICZMkboZG-NYG2EN4XlMFtiVMHBJhl5QJ19xbgrE0S80yODJpCrdlEb0p7SciUMTZr7kWSoeBq7wV2EGNRPVuyaPSES54VKspqtW0Ao3B4kRxzVhOhTN6vw_YHQ54rsg6fu-6PVjtCDcUeUlUarJ-Hglf-lSC3fVW_ybmFky0uxfn0fnJ5dkaTAp6kHPBhFiHseKlbzYQtRR6szTUd3Dw6BE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfTBb_HbCj74krmkbbY-DufwG2Gb7K0kbYLibMV2D9tf712bDacI-tjmg-RySX7h7n5HyGkgjMYwJ-pFDEm1fZ8qHgUUlIMZpFxzGxjvfP8grnreTd_v26AwjIWBQWTQU1YY8XFXv8fGMgywc_ifyCSt1iI4Y4U_TxbQaIeOfM2LzuT8RRUUpS0Z3soAKKaEPj86wBspymZvpNkDubhl2qukNx1f4VzyWh3mqhqNv1E3_ncCa2TFwk6nWerJOpnTyQZZ_kJGuEmeOnpgaEsP0FNj5Dw-p3lKrzF8RDud_OUN83ylH5kDKLcsjMtk9k4HfeDzl7GOne7wDUqLRjaya7RFeu3L7sUVtVkXqASol1MhJPO0MvWGZwDrMQ5f0nDmAjaM46geaO4Z40MN7rp16ZsG11GAxF1CxEwxd5tUkjTRO8QRcZ3XGgZQnFRezH2J3P2KKS5V4Neku0tOQSKh3TVZWBjEOQutmEIrpl1SnSxQGFnmckygMfi9wdm0wXtJ2vF71ZPJioewsdBaIhOdDrOQe8LDVOw1d-9vwzwmi4-tdnh3_XC7T5Y4vssZp5wfkEr-MdSHAF5ydVTo6if84uqU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Delivery+Photo-Immune+Stimulators+for+Photodynamic+Sensitized+Tumor+Immunotherapy&rft.jtitle=ACS+nano&rft.au=Zhao%2C+Lin-Ping&rft.au=Zheng%2C+Rong-Rong&rft.au=Huang%2C+Jia-Qi&rft.au=Chen%2C+Xia-Yun&rft.date=2020-12-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=14&rft.issue=12&rft.spage=17100&rft.epage=17113&rft_id=info:doi/10.1021%2Facsnano.0c06765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_0c06765 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |