Combining Multiple High-Resolution In Situ Techniques to Understand Phosphorous Availability Around Rice Roots

Resolving chemical/biological drivers of P behavior around lowland/flooded rice roots remains a challenge because of the heterogeneity of the plant–soil interactions, compounded by sampling and analytical constraints. High-spatial-resolution (sub-mm) visualization enables these processes to be isola...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 55; no. 19; pp. 13082 - 13092
Main Authors Fang, Wen, Williams, Paul N, Zhang, Hao, Yang, Yi, Yin, Daixia, Liu, Zhaodong, Sun, Haitao, Luo, Jun
Format Journal Article
LanguageEnglish
Published Easton American Chemical Society 05.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Resolving chemical/biological drivers of P behavior around lowland/flooded rice roots remains a challenge because of the heterogeneity of the plant–soil interactions, compounded by sampling and analytical constraints. High-spatial-resolution (sub-mm) visualization enables these processes to be isolated, characterized, and deciphered. Here, three advanced soil imaging systems, diffusive gradients in thin-film technique coupled with laser ablation-ICPMS (DGT-LA-ICPMS), O2 planar optode, and soil zymography, were integrated. This trio of approaches was then applied to a rice life cycle study to quantify solute-P supply, through two dimensions, in situ, and low-disturbance high-resolution (HR) chemical imaging. This allowed mechanisms of P release to be delineated by O2, Fe, and phosphatase activity mapping at the same scale. HR-DGT revealed P depletion around both living and dead rice roots but with highly spatially variable Fe/P ratios (∼0.2–12.0) which aligned with changing redox conditions and root activities. Partnering of HR-DGT and soil zymography revealed concurrent P depletion and phosphatase hotspots in the rhizosphere and detritusphere zones (Mantel: 0.610–0.810, p < 0.01). This close affinity between these responses (Pearson correlation: −0.265 to −0.660, p < 0.01) cross-validates the measurements and reaffirms that P depletion stimulates phosphatase activity and Porg mineralization. The μ-scale biogeochemical landscape of rice rhizospheres and detritusphere, as documented here, needs greater consideration when implementing interventions to improve sustainable P nutrition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c05358