Few-Layer MoS2: A Promising Layered Semiconductor

Due to the recent expanding interest in two-dimensional layered materials, molybdenum disulfide (MoS2) has been receiving much research attention. Having an ultrathin layered structure and an appreciable direct band gap of 1.9 eV in the monolayer regime, few-layer MoS2 has good potential application...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 8; no. 5; pp. 4074 - 4099
Main Authors Ganatra, Rudren, Zhang, Qing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to the recent expanding interest in two-dimensional layered materials, molybdenum disulfide (MoS2) has been receiving much research attention. Having an ultrathin layered structure and an appreciable direct band gap of 1.9 eV in the monolayer regime, few-layer MoS2 has good potential applications in nanoelectronics, optoelectronics, and flexible devices. In addition, the capability of controlling spin and valley degrees of freedom makes it a promising material for spintronic and valleytronic devices. In this review, we attempt to provide an overview of the research relevant to the structural and physical properties, fabrication methods, and electronic devices of few-layer MoS2. Recent developments and advances in studying the material are highlighted.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/nn405938z