Hysteresis and Instability Predicted in Moisture Degradation of Perovskite Solar Cells

The degradation of the perovskite solar cell structure was expected recently to be reversible, which opened a new gate to the enhancement of the device lifetime by reversing the process. However, the kinetic details of the structural collapse and recovery are still missing, without which the perovsk...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 43; pp. 48882 - 48889
Main Authors Xu, Kelvin J, Wang, Ryan T, Xu, Alex F, Chen, Jason Y, Xu, Gu
Format Journal Article
LanguageEnglish
Published American Chemical Society 28.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The degradation of the perovskite solar cell structure was expected recently to be reversible, which opened a new gate to the enhancement of the device lifetime by reversing the process. However, the kinetic details of the structural collapse and recovery are still missing, without which the perovskite reversibility cannot be further explored. Due to the experimental difficulty, a purposeful numerical model was conducted in this report, to simulate the water diffusion process in the perovskite structure in both directions. It was found that the moisture diffusion needs to be initiated by a certain level of structural imperfection and is non-Fickian, as assisted by the collapse of the perovskite into the 1D chains. The reversibility was verified by the back diffusion, but accompanied by hysteresis, stagnancy, and even surprising instability, which initiated the water flow under initial equilibrium, due possibly to the imbalance during the reconstruction of the perovskite lattice. These observations offer new insights to form strategies of improvement, for example, via the possible self-healing perovskite devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c17323