Shape-Memory Three-Dimensional Evaporators with High Portability for Efficient Solar-Driven Freshwater Production

Solar-driven water evaporation can alleviate the severe water scarcity situation in a nonpolluting and sustainable manner. Although the design of integrated three-dimensional (3D) solar evaporators has been proven to be effective in achieving ultrahigh evaporation rates and energy efficiency, their...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 44; pp. 51289 - 51299
Main Authors Zhang, Xintao, Liu, Ji, Han, Shuang, Li, Wei, Li, Changjun, Gao, Fu-Lin, Shu, Chao, Yu, Zhong-Zhen, Li, Xiaofeng
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Solar-driven water evaporation can alleviate the severe water scarcity situation in a nonpolluting and sustainable manner. Although the design of integrated three-dimensional (3D) solar evaporators has been proven to be effective in achieving ultrahigh evaporation rates and energy efficiency, their scalable application is still hindered by complex manufacturing processes and poor portability. Herein, we report a highly portable shape-memory 3D solar evaporator by depositing MXene on low-cost lignin-cellulosic sponges for freshwater production. When not in use, the 3D evaporator can be compressed into a thin film with up to 89.3% volume reduction, ensuring minimal space occupation and high portability. When needed, due to the shape-memory effect, the 3D structure can be rapidly restored by swelling the compressed film in water, resulting in an efficient 3D solar evaporator. This 3D evaporator exhibits not only a high evaporation rate of 2.48 kg m–2 h–1 under 1 sun illumination but also excellent long-term stability and recyclability. In addition, the 3D evaporator itself can serve as a water reservoir without requiring a continuous water supply during evaporation, showing remarkable application flexibility. This work opens a new perspective for manufacturing highly portable and efficient 3D solar evaporators and may facilitate their progress from the laboratory to commercial applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c13297