Chemoplasmonic Oscillation: A Chemomechanical Energy Transducer

Chemical oscillations and waves are nonequilibrium systems that sustain a steady state with constant energy input of reactants like the life systems. Most of these oscillations are theoretically and fundamentally exploited but how to mimic the energy convolution of biological systems remains elusive...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 45; pp. 42580 - 42585
Main Authors Deng, Fangfang, Feng, Jiajin, Ding, Tao
Format Journal Article
LanguageEnglish
Published American Chemical Society 13.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chemical oscillations and waves are nonequilibrium systems that sustain a steady state with constant energy input of reactants like the life systems. Most of these oscillations are theoretically and fundamentally exploited but how to mimic the energy convolution of biological systems remains elusive. Here we develop a chemomechanical energy transducer (CoMET) based on gold nanoparticles (Au NPs) and thermo-/pH-responsive polymers, which transforms the trapped chemical energy into a tangible mechanical oscillation probed by extinction spectra. Our results show that the mechanical movement of Au NPs characterized by the chemoplasmonic oscillation follows exactly the pH oscillation and can be tuned by changing the temperature and the injection rate of the reductants. It is revealed that the energy input of the redox potentials which later converts to the collective (dis-)aggregation of Au NPs is the main driving force of the chemoplasmonic oscillation. The energy efficiency (∼34%) and force generation (∼28 pN) of this CoMET outperforms many biochemomechanical systems, which offers an alternative means to power the nanomechanics and nanomachines.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b13723