Tough, Anti-Swelling Supramolecular Hydrogels Mediated by Surfactant–Polymer Interactions for Underwater Sensors

It is a great challenge for traditional hydrogel-based sensors to be effective underwater due to unsatisfactory water resistance and insufficient wet adhesion. Herein, a tough supramolecular hydrogel aiming at underwater sensing is prepared by the modification of hydrophilic poly­(acrylic acid) (PAA...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 26; pp. 30385 - 30397
Main Authors Qi, Chuyi, Dong, Zhixian, Huang, Yuekai, Xu, Jinbao, Lei, Caihong
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is a great challenge for traditional hydrogel-based sensors to be effective underwater due to unsatisfactory water resistance and insufficient wet adhesion. Herein, a tough supramolecular hydrogel aiming at underwater sensing is prepared by the modification of hydrophilic poly­(acrylic acid) (PAA) with a small amount of hydrophobic lauryl methacrylate (LMA) in the presence of high concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB). Owing to the synergistic effects of the electrostatic interactions and hydrophobic associations of CTAB with the P­(AA-co-LMA) copolymer, the hydrogel with a water content of approximately 58.5 wt % demonstrates outstanding anti-swelling feature, superior tensile strength (≈1.6 MPa), large stretchability (>900%), rapid room-temperature self-recovery (≈3 min at 100% strain), and robust wet adhesion to diverse substrates. Moreover, the strain sensor based on the hydrogel displays keen sensitivity in a sensing range of 0–900% (gauge factor is 0.42, 3.44, 5.44, and 7.39 in the strain range of 0–100, 100–300, 300–500, and 500–900%, respectively) and pronounced stability both in air and underwater. Additionally, the hydrogel can be easily recycled by dissolving in anhydrous ethanol. This work provides a facile strategy to fabricate eco-friendly, tough supramolecular hydrogels for underwater sensing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c06395