Impact Ionization Induced by Accelerated Photoelectrons for Wide-Range and Highly Sensitive Detection of Volatile Organic Compounds at Room Temperature

Ionization-based volatile organic compound (VOC) sensors that use photons or electrons operating at room temperature have attracted considerable attention as a promising alternative to conventional metal oxide-based sensors that require high temperature for sensing function. However, the photoioniza...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 22; pp. 20491 - 20499
Main Authors Kang, Yunsung, Pyo, Soonjae, Jeong, Han-Il, Lee, Kyounghoon, Baek, Dae-Hyun, Kim, Jongbaeg
Format Journal Article
LanguageEnglish
Published American Chemical Society 05.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ionization-based volatile organic compound (VOC) sensors that use photons or electrons operating at room temperature have attracted considerable attention as a promising alternative to conventional metal oxide-based sensors that require high temperature for sensing function. However, the photoionization sensors cannot ionize many gas species for their limited photon energy, and field emission-based ionization sensors that rely on the breakdown voltage of specific gas species in a pure state may not tell different concentration. This work demonstrates the detection of VOCs using impact ionization induced by accelerated photoelectrons. Although the photoelectrons emitted by relatively low photon energy typically have insufficient kinetic energy to cause impact ionization, in this approach, they are accelerated between microgap electrodes to enhance their kinetic energy such that the impact ionization of VOCs can be achieved. The demonstrated gas sensor sensitively detects toluene concentration in a wide range from 1000 ppm to 100 ppb with fast response and recovery time at room temperature. Additionally, diverse VOC species including benzene, p-xylene, and even acetylene with high ionization energy can be detected. The proposed method could be a viable solution for VOC sensors with low cost, scalable producibility, and high performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b02153