Double-Phase-Functionalized Magnetic Janus Polymer Microparticles Containing TiO2 and Fe2O3 Nanoparticles Encapsulated in Mussel-Inspired Amphiphilic Polymers

Recently, anisotropic colloidal polymeric materials including Janus microparticles, which have two distinct aspects on their surfaces or interiors, have garnered much interest due to their anisotropic alignment and rotational orientation with respect to external electric or magnetic fields. Janus mi...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 6; no. 20; pp. 18122 - 18128
Main Authors Yabu, Hiroshi, Ohshima, Hiroyuki, Saito, Yuta
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recently, anisotropic colloidal polymeric materials including Janus microparticles, which have two distinct aspects on their surfaces or interiors, have garnered much interest due to their anisotropic alignment and rotational orientation with respect to external electric or magnetic fields. Janus microparticles are also good candidates for pigments in “twisting ball type” electronic paper, which is considered promising for next-generation flexible display devices. We demonstrate here a universal strategy to encapsulate inorganic nanoparticles and to introduce different such inorganic nanoparticles into distinct polymer phases in Janus microparticles. TiO2 and Fe2O3 nanoparticles were separately encapsulated in two different mussel-inspired amphiphilic copolymers, and then organic–inorganic composite Janus microparticles were prepared by simple evaporation of solvent from the dispersion containing the polymer and nanoparticle. These Janus microparticles were observed to rotate quickly in response to applied magnetic fields.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/am506530s