Tracking Peripheral Artery Motion and Vascular Resistance With a Multimodal Wearable Sensor Under Pressure Perturbations
The status of peripheral arteries is known to be a key physiological indicator of the body's response to both acute and chronic medical conditions. In this paper, peripheral artery deformation is tracked by wearable photoplethysmograph (PPG) and piezo-electric (polyvinylidene difluoride, PVDF)...
Saved in:
Published in | Journal of biomechanical engineering Vol. 144; no. 8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.08.2022
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The status of peripheral arteries is known to be a key physiological indicator of the body's response to both acute and chronic medical conditions. In this paper, peripheral artery deformation is tracked by wearable photoplethysmograph (PPG) and piezo-electric (polyvinylidene difluoride, PVDF) sensors, under pressure-varying cuff. A simple mechanical model for the local artery and intervening tissue captures broad features present in the PPG and PVDF signals on multiple swine subjects, with respect to varying cuff pressure. These behaviors provide insight into the robustness of cardiovascular property identification by noninvasive wearable sensing. This is found to help refine noninvasive blood pressure measurements and estimation of systemic vascular resistance (SVR) using selected features of sensor amplitude versus applied pressure. |
---|---|
ISSN: | 1528-8951 |
DOI: | 10.1115/1.4053399 |