Nanofiber Hydrogel Drug Delivery System for Prevention of Postsurgical Intestinal Adhesion

Intestinal adhesion is one of the complications that occurs more frequently after abdominal surgery. Postsurgical intestinal adhesion (PIA) can lead to a series of health problems, including abdominal pain, intestinal obstruction, and female infertility. Currently, hydrogels and nanofibrous films as...

Full description

Saved in:
Bibliographic Details
Published inACS biomaterials science & engineering Vol. 10; no. 5; pp. 3164 - 3172
Main Authors Zhao, Bei, Zhu, Panyong, Zhang, Hongyu, Gao, Yaoran, Zha, Ling, Jin, Lin, Zhang, Lei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Intestinal adhesion is one of the complications that occurs more frequently after abdominal surgery. Postsurgical intestinal adhesion (PIA) can lead to a series of health problems, including abdominal pain, intestinal obstruction, and female infertility. Currently, hydrogels and nanofibrous films as barriers are often used for preventing PIA formation; however, these kinds of materials have their intrinsic disadvantages. Herein, we developed a dual-structure drug delivery patch consisting of poly lactic-co-glycolic acid (PLGA) nanofibers and a chitosan hydrogel (NHP). PLGA nanofibers loaded with deferoxamine mesylate (DFO) were incorporated into the hydrogel; meanwhile, the hydrogel was loaded with anti-inflammatory drug dexamethasone (DXMS). The rapid degradation of the hydrogel facilitated the release of DXMS at the acute inflammatory stage of the early injury and provided effective anti-inflammatory effects for wound sites. Moreover, PLGA composite nanofibers could provide sustained and stable release of DFO for promoting the peritoneal repair by the angiogenesis effects of DFO. The in vivo results indicated that NHP can effectively prevent PIA formation by restraining inflammation and vascularization, promoting peritoneal repair. Therefore, we believe that our NHP has a great potential application in inhibition of PIA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2373-9878
2373-9878
DOI:10.1021/acsbiomaterials.3c01936